Twisted hybrid algorithms for combinatorial optimization
- URL: http://arxiv.org/abs/2203.00717v1
- Date: Tue, 1 Mar 2022 19:47:16 GMT
- Title: Twisted hybrid algorithms for combinatorial optimization
- Authors: Libor Caha, Alexander Kliesch, Robert Koenig
- Abstract summary: Proposed hybrid algorithms encode a cost function into a problem Hamiltonian and optimize its energy by varying over a set of states with low circuit complexity.
We show that for levels $p=2,ldots, 6$, the level $p$ can be reduced by one while roughly maintaining the expected approximation ratio.
- Score: 68.8204255655161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Proposed hybrid algorithms encode a combinatorial cost function into a
problem Hamiltonian and optimize its energy by varying over a set of states
with low circuit complexity. Classical processing is typically only used for
the choice of variational parameters following gradient descent. As a
consequence, these approaches are limited by the descriptive power of the
associated states.
We argue that for certain combinatorial optimization problems, such
algorithms can be hybridized further, thus harnessing the power of efficient
non-local classical processing. Specifically, we consider combining a quantum
variational ansatz with a greedy classical post-processing procedure for the
MaxCut-problem on $3$-regular graphs. We show that the average cut-size
produced by this method can be quantified in terms of the energy of a modified
problem Hamiltonian. This motivates the consideration of an improved algorithm
which variationally optimizes the energy of the modified Hamiltonian. We call
this a twisted hybrid algorithm since the additional classical processing step
is combined with a different choice of variational parameters. We exemplify the
viability of this method using the quantum approximate optimization algorithm
(QAOA), giving analytic lower bounds on the expected approximation ratios
achieved by twisted QAOA. These show that the necessary non-locality of the
quantum ansatz can be reduced compared to the original QAOA: We find that for
levels $p=2,\ldots, 6$, the level $p$ can be reduced by one while roughly
maintaining the expected approximation ratio. This reduces the circuit depth by
$4$ and the number of variational parameters by $2$.
Related papers
- Probabilistic tensor optimization of quantum circuits for the
max-$k$-cut problem [0.0]
We propose a technique for optimizing parameterized circuits in variational quantum algorithms.
We illustrate our approach on the example of the quantum approximate optimization algorithm (QAOA) applied to the max-$k$-cut problem.
arXiv Detail & Related papers (2023-10-16T12:56:22Z) - Alternatives to a nonhomogeneous partial differential equation quantum
algorithm [52.77024349608834]
We propose a quantum algorithm for solving nonhomogeneous linear partial differential equations of the form $Apsi(textbfr)=f(textbfr)$.
These achievements enable easier experimental implementation of the quantum algorithm based on nowadays technology.
arXiv Detail & Related papers (2022-05-11T14:29:39Z) - Parameters Fixing Strategy for Quantum Approximate Optimization
Algorithm [0.0]
We propose a strategy to give high approximation ratio on average, even at large circuit depths, by initializing QAOA with the optimal parameters obtained from the previous depths.
We test our strategy on the Max-cut problem of certain classes of graphs such as the 3-regular graphs and the Erd"os-R'enyi graphs.
arXiv Detail & Related papers (2021-08-11T15:44:16Z) - Hybrid quantum-classical algorithms for approximate graph coloring [65.62256987706128]
We show how to apply the quantum approximate optimization algorithm (RQAOA) to MAX-$k$-CUT, the problem of finding an approximate $k$-vertex coloring of a graph.
We construct an efficient classical simulation algorithm which simulates level-$1$ QAOA and level-$1$ RQAOA for arbitrary graphs.
arXiv Detail & Related papers (2020-11-26T18:22:21Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - An adaptive quantum approximate optimization algorithm for solving
combinatorial problems on a quantum computer [0.0]
The quantum approximate optimization algorithm (QAOA) is a hybrid variational quantum-classical algorithm that solves optimization problems.
We develop an iterative version of QAOA that is problem-tailored, and which can also be adapted to specific hardware constraints.
We simulate the algorithm on a class of Max-Cut graph problems and show that it converges much faster than the standard QAOA.
arXiv Detail & Related papers (2020-05-20T18:00:01Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z) - Accelerating Quantum Approximate Optimization Algorithm using Machine
Learning [6.735657356113614]
We propose a machine learning based approach to accelerate quantum approximate optimization algorithm (QAOA) implementation.
QAOA is a quantum-classical hybrid algorithm to prove the so-called quantum supremacy.
We show that the proposed approach can curtail the number of optimization iterations by up to 65.7%) from an analysis performed with 264 flavors of graphs.
arXiv Detail & Related papers (2020-02-04T02:21:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.