論文の概要: Chinese Medical Question Answer Matching Based on Interactive Sentence
Representation Learning
- arxiv url: http://arxiv.org/abs/2011.13573v1
- Date: Fri, 27 Nov 2020 06:13:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-20 01:54:14.183014
- Title: Chinese Medical Question Answer Matching Based on Interactive Sentence
Representation Learning
- Title(参考訳): 対話型文表現学習に基づく中国語医学質問応答照合
- Authors: Xiongtao Cui and Jungang Han
- Abstract要約: 中国の医学的質問応答マッチングは、英語のオープンドメインの質問応答マッチングよりも難しい。
本稿では,この問題に対処するための対話型文表現学習モデルを設計する。
我々のモデルは、中国の医学的質問応答マッチングの最先端モデル全てを著しく上回っている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chinese medical question-answer matching is more challenging than the
open-domain question answer matching in English. Even though the deep learning
method has performed well in improving the performance of question answer
matching, these methods only focus on the semantic information inside
sentences, while ignoring the semantic association between questions and
answers, thus resulting in performance deficits. In this paper, we design a
series of interactive sentence representation learning models to tackle this
problem. To better adapt to Chinese medical question-answer matching and take
the advantages of different neural network structures, we propose the Crossed
BERT network to extract the deep semantic information inside the sentence and
the semantic association between question and answer, and then combine with the
multi-scale CNNs network or BiGRU network to take the advantage of different
structure of neural networks to learn more semantic features into the sentence
representation. The experiments on the cMedQA V2.0 and cMedQA V1.0 dataset show
that our model significantly outperforms all the existing state-of-the-art
models of Chinese medical question answer matching.
- Abstract(参考訳): 中国の医学質問応答マッチングは、英語のオープンドメイン質問応答マッチングよりも難しい。
深層学習法は質問応答マッチングの性能向上に優れてきたが,これらの手法は文内の意味情報のみに焦点をあてるが,質問と回答間の意味関係は無視し,結果として性能に欠陥が生じる。
本稿では,この問題に取り組むために,対話型文表現学習モデルの設計を行う。
本稿では,中国語の医学的問答マッチングに適応し,異なるニューラルネットワークの構造の利点を活かし,文内の深い意味情報を抽出し,問答間の意味関係を抽出し,多スケールcnnsネットワークやbigruネットワークと組み合わせ,ニューラルネットワークの異なる構造を活用し,文表現における意味的特徴を学習するクロスクロスバートネットワークを提案する。
cMedQA V2.0とcMedQA V1.0データセットの実験により、我々のモデルは、中国の医学的質問応答マッチングの既存の最先端モデルよりも大幅に優れていることが示された。
関連論文リスト
- Medical Vision-Language Pre-Training for Brain Abnormalities [96.1408455065347]
本稿では,PubMedなどの公共リソースから,医用画像・テキスト・アライメントデータを自動的に収集する方法を示す。
特に,まず大きな脳画像テキストデータセットを収集することにより,事前学習プロセスの合理化を図るパイプラインを提案する。
また,医療領域におけるサブフィギュアをサブキャプションにマッピングするというユニークな課題についても検討した。
論文 参考訳(メタデータ) (2024-04-27T05:03:42Z) - Explanatory Argument Extraction of Correct Answers in Resident Medical
Exams [5.399800035598185]
本稿では, 正しい回答に対する説明的議論だけでなく, 誤った回答が正しい理由を推論するための議論を含む新しいデータセットを提案する。
このベンチマークにより,医師が作成した正しい回答の説明を識別する新しい抽出タスクを構築できる。
論文 参考訳(メタデータ) (2023-12-01T13:22:35Z) - ViMQ: A Vietnamese Medical Question Dataset for Healthcare Dialogue
System Development [1.4315915057750197]
ベトナムでは,文レベルおよびエンティティレベルのアノテーションを持つ患者からの医療質問のデータセットを公開している。
本研究では,スパンノイズモデルを用いた簡易な自己教師型学習手法を提案する。
論文 参考訳(メタデータ) (2023-04-27T17:59:53Z) - A Dual-Attention Learning Network with Word and Sentence Embedding for
Medical Visual Question Answering [2.0559497209595823]
医学的視覚的質問応答(MVQA)の研究は、コンピュータ支援診断の開発に寄与する。
既存のMVQA質問抽出方式は、主にテキスト中の医療情報を無視した単語情報に焦点を当てている。
本研究では,単語と文の埋め込み(WSDAN)を併用した二重注意学習ネットワークを提案する。
論文 参考訳(メタデータ) (2022-10-01T08:32:40Z) - CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark [51.38557174322772]
中国初のバイオメディカル言語理解評価ベンチマークを提示する。
名前付きエンティティ認識、情報抽出、臨床診断正規化、単文/文対分類を含む自然言語理解タスクのコレクションである。
本研究は,現在の11種類の中国モデルによる実験結果について報告し,その実験結果から,現在最先端のニューラルモデルがヒトの天井よりもはるかに悪い性能を示すことが示された。
論文 参考訳(メタデータ) (2021-06-15T12:25:30Z) - A Multi-Size Neural Network with Attention Mechanism for Answer
Selection [3.310455595316906]
応答選択タスクには,アテンション機構を備えたマルチサイズニューラルネットワーク(AM-MSNN)が効果的に導入されている。
単一層CNNや多層CNNと比較してフィルタのサイズが多様であるため、並列でより多くの言語粒度をキャプチャする。
注意機構によって文表現を拡張し、様々な種類の質問についてより多くの情報を含む。
論文 参考訳(メタデータ) (2021-04-24T02:13:26Z) - Where's the Question? A Multi-channel Deep Convolutional Neural Network
for Question Identification in Textual Data [83.89578557287658]
本稿では,実際の質問を分離する目的で,新しい多チャンネル深層畳み込みニューラルネットワークアーキテクチャであるQuest-CNNを提案する。
提案するニューラルネットワークと他のディープニューラルネットワークの総合的な性能比較分析を行った。
提案したQuest-CNNは、透析ケア設定におけるデータエントリレビュー対話のデータセットと一般的なドメインデータセットの両方において、最高のF1スコアを達成した。
論文 参考訳(メタデータ) (2020-10-15T15:11:22Z) - Interpretable Multi-Step Reasoning with Knowledge Extraction on Complex
Healthcare Question Answering [89.76059961309453]
HeadQAデータセットには、公衆医療専門試験で認可された複数の選択質問が含まれている。
これらの質問は、現在のQAシステムにとって最も難しいものです。
知識抽出フレームワーク(MurKe)を用いた多段階推論を提案する。
市販の事前訓練モデルを完全に活用しようと努力しています。
論文 参考訳(メタデータ) (2020-08-06T02:47:46Z) - Knowledgeable Dialogue Reading Comprehension on Key Turns [84.1784903043884]
MRC(Multi-choice Machine reading comprehension)は、ある項目と質問に対する候補オプションから正しい回答を選択するモデルである。
本研究は,複数回対話を行う対話型MRCに焦点を当てている。
それは2つの課題に悩まされ、答えの選択決定は、最近役に立つコモンセンスをサポートせずに行われ、マルチターンコンテキストは、かなりの無関係な情報を隠蔽する可能性がある。
論文 参考訳(メタデータ) (2020-04-29T07:04:43Z) - Information-Theoretic Probing for Linguistic Structure [74.04862204427944]
本稿では,相互情報を推定するための情報理論による探索運用手法を提案する。
我々は,NLP研究でしばしば不足している10の型的多様言語について評価した。
論文 参考訳(メタデータ) (2020-04-07T01:06:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。