Energy-level-attraction and heating-resistant-cooling of mechanical
resonators with exceptional points
- URL: http://arxiv.org/abs/2011.13587v1
- Date: Fri, 27 Nov 2020 07:26:25 GMT
- Title: Energy-level-attraction and heating-resistant-cooling of mechanical
resonators with exceptional points
- Authors: Cheng Jiang, Yu-Long Liu, Mika A. Sillanp\"a\"a
- Abstract summary: We study the energy-level evolution and ground-state cooling of mechanical resonators under a synthetic phononic gauge field.
We propose a heating-resistant ground-state cooling based on the nonreciprocal phonon transport.
- Score: 3.167554518801207
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the energy-level evolution and ground-state cooling of mechanical
resonators under a synthetic phononic gauge field. The tunable gauge phase is
mediated by the phase difference between the $\mathcal{PT}$- and
anti-$\mathcal{PT}$-symmetric mechanical couplings in a multimode
optomechanical system. The transmission spectrum then exhibits the asymmetric
Fano line shape or double optomechanically induced transparency by modulating
the gauge phase. Moreover, the eigenvalues will collapse and become degenerate
although the mechanical coupling is continuously increased. Such
counterintuitive energy-attraction, instead of anti-crossing, attributes to
destructive interferences between $\mathcal{PT}$- and
anti-$\mathcal{PT}$-symmetric couplings. We find that the energy-attraction, as
well as the accompanied exceptional points (EPs), can be more intuitively
observed in the cavity output power spectrum where the mechanical eigenvalues
correspond to the peaks. For mechanical cooling, the average phonon occupation
number becomes minimum at these EPs. Especially, phonon transport becomes
nonreciprocal and even ideally unidirectional at the EPs. Finally, we propose a
heating-resistant ground-state cooling based on the nonreciprocal phonon
transport, which is mediated by the gauge field. Towards the quantum regime of
macroscopic mechanical resonators, most optomechanical systems are ultimately
limited by their intrinsic cavity or mechanical heating. Our work revealed that
the thermal energy transfer can be blocked by tuning the gauge phase, which
supports a promising route to overpass the notorious heating limitations.
Related papers
- Motional sideband asymmetry of a solid-state mechanical resonator at room temperature [0.0]
We sideband-cool a membrane-in-the-middle system close to the quantum ground state from room temperature.
We observe motional sideband asymmetry in a dual-homodyne measurement.
arXiv Detail & Related papers (2024-08-12T21:23:38Z) - Limits for coherent optical control of quantum emitters in layered
materials [49.596352607801784]
coherent control of a two-level system is among the most essential challenges in modern quantum optics.
We use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive.
New insights on the underlying physical decoherence mechanisms reveals a limit in temperature until which coherent driving of the system is possible.
arXiv Detail & Related papers (2023-12-18T10:37:06Z) - Selective cooling and squeezing in a lossy optomechanical closed loop embodying an exceptional surface [0.0]
We investigate a lossy optomechanical system consisting of one optical and two degenerate mechanical resonators.
In examining a specific quantum attribute, we delve into the control of quadrature variances within the resonator selected through the plaquette phase.
We provide physical insights into how non-Hermiticity plays a crucial role in enhancing cooling and squeezing in proximity to exceptional points.
arXiv Detail & Related papers (2023-07-19T09:19:53Z) - Quantum field heat engine powered by phonon-photon interactions [58.720142291102135]
We present a quantum heat engine based on a cavity with two oscillating mirrors.
The engine performs an Otto cycle during which the walls and a field mode interact via a nonlinear Hamiltonian.
arXiv Detail & Related papers (2023-05-10T20:27:15Z) - Brillouin optomechanics in the quantum ground state [0.0]
Bulk acoustic wave (BAW) resonators are attractive as intermediaries in a microwave-to-optical transducer.
In this work, we demonstrate ground state operation of a Brillouin optomechanical system composed of a quartz BAW resonator inside an optical cavity.
arXiv Detail & Related papers (2023-03-08T15:56:52Z) - Unconditional Wigner-negative mechanical entanglement with
linear-and-quadratic optomechanical interactions [62.997667081978825]
We propose two schemes for generating Wigner-negative entangled states unconditionally in mechanical resonators.
We show analytically that both schemes stabilize a Wigner-negative entangled state that combines the entanglement of a two-mode squeezed vacuum with a cubic nonlinearity.
We then perform extensive numerical simulations to test the robustness of Wigner-negative entanglement attained by approximate CPE states stabilized in the presence of thermal decoherence.
arXiv Detail & Related papers (2023-02-07T19:00:08Z) - Parity-dependent unidirectional and chiral photon transfer in
reversed-dissipation cavity optomechanics [11.712867508048555]
We show broadband nonreciprocal photon transmission in the emphreversed-dissipation regime.
In the reversed-dissipation regime, the nonreciprocal bandwidth is no longer limited by the mechanical mode linewidth.
We find that the direction of the unidirectional and chiral energy transfer could be reversed by changing the emphparity of the Eps.
arXiv Detail & Related papers (2022-12-22T23:57:00Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Noise-resilient Edge Modes on a Chain of Superconducting Qubits [103.93329374521808]
Inherent symmetry of a quantum system may protect its otherwise fragile states.
We implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $mathbbZ$ parity symmetry.
MEMs are found to be resilient against certain symmetry-breaking noise owing to a prethermalization mechanism.
arXiv Detail & Related papers (2022-04-24T22:34:15Z) - Domino cooling of a coupled mechanical-resonator chain via cold-damping
feedback [2.2648323929212446]
We propose a domino-cooling method to realize simultaneous ground-state cooling of a coupled mechanical-resonator chain.
We obtain analytical results for the effective susceptibilities, noise spectra, final mean phonon numbers, and cooling rates of these mechanical resonators.
This study opens a route to quantum manipulation of multiple mechanical resonators in the bad-cavity regime.
arXiv Detail & Related papers (2020-12-23T14:00:03Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.