Selective cooling and squeezing in a lossy optomechanical closed loop embodying an exceptional surface
- URL: http://arxiv.org/abs/2307.09851v4
- Date: Wed, 26 Jun 2024 05:28:26 GMT
- Title: Selective cooling and squeezing in a lossy optomechanical closed loop embodying an exceptional surface
- Authors: Beyza Sütlüoğlu Ege, Ceyhun Bulutay,
- Abstract summary: We investigate a lossy optomechanical system consisting of one optical and two degenerate mechanical resonators.
In examining a specific quantum attribute, we delve into the control of quadrature variances within the resonator selected through the plaquette phase.
We provide physical insights into how non-Hermiticity plays a crucial role in enhancing cooling and squeezing in proximity to exceptional points.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A closed-loop, lossy optomechanical system consisting of one optical and two degenerate mechanical resonators is computationally investigated. This system constitutes an elementary synthetic plaquette derived from the loop phase of the intercoupling coefficients. In examining a specific quantum attribute, we delve into the control of quadrature variances within the resonator selected through the plaquette phase. An amplitude modulation is additionally applied to the cavity-pumping laser to incorporate mechanical squeezing. Our numerical analysis relies on the integration-free computation of steady-state covariances for cooling and the Floquet technique for squeezing. We provide physical insights into how non-Hermiticity plays a crucial role in enhancing cooling and squeezing in proximity to exceptional points. This enhancement is associated with the behavior of complex eigenvalue loci as a function of the intermechanical coupling rate. Additionally, we demonstrate that the parameter space embodies an exceptional surface, ensuring the robustness of exceptional point singularities under experimental parameter variations. However, the pump laser detuning breaks away from the exceptional surface unless it resides on the red-sideband by an amount sufficiently close to the mechanical resonance frequency. Finally, we show that this disparate parametric character entitles frequency-dependent cooling and squeezing, which is of technological importance.
Related papers
- Squeezing for Broadband Multidimensional Variational Measurement [55.2480439325792]
We show that optical losses inside cavity restrict back action exclusion due to loss noise.
We analyze how two-photon (nondegenerate) and conventional (degenerate) squeezing improve sensitivity with account optical losses.
arXiv Detail & Related papers (2023-10-06T18:41:29Z) - Exceptional point induced quantum phase synchronization and entanglement
dynamics in mechanically coupled gain-loss oscillators [0.0]
This paper investigates how quantum phase synchronization relates to bipartite Gaussian entanglement in coupled gain-loss mechanical oscillators.
We examine the role of exceptional point in a deterministic way of producing self-sustained oscillations that induce robust quantum correlations.
These findings hold promise for applications in phonon-based quantum communication and information processing.
arXiv Detail & Related papers (2023-09-12T18:30:51Z) - Resonance-dominant optomechanical entanglement in open quantum systems [3.586645469368644]
Motivated by entanglement protection, our work utilizes a resonance effect to enhance optomechanical entanglement in the coherent-state representation.
We reveal that protecting continuous-variable entanglement involves the elimination of degrees of freedom associated with significant detuning components, thereby resisting decoherence.
Our study breaks new ground for applying the resonance effect to protect quantum systems from decoherence and advancing the possibilities of large-scale quantum information processing and quantum network construction.
arXiv Detail & Related papers (2023-07-23T17:25:09Z) - Unconditional Wigner-negative mechanical entanglement with
linear-and-quadratic optomechanical interactions [62.997667081978825]
We propose two schemes for generating Wigner-negative entangled states unconditionally in mechanical resonators.
We show analytically that both schemes stabilize a Wigner-negative entangled state that combines the entanglement of a two-mode squeezed vacuum with a cubic nonlinearity.
We then perform extensive numerical simulations to test the robustness of Wigner-negative entanglement attained by approximate CPE states stabilized in the presence of thermal decoherence.
arXiv Detail & Related papers (2023-02-07T19:00:08Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - On the Su-Schrieffer-Heeger model of electron transport: low-temperature
optical conductivity by the Mellin transform [62.997667081978825]
We describe the low-temperature optical conductivity as a function of frequency for a quantum-mechanical system of electrons that hop along a polymer chain.
Our goal is to show vias how the interband conductivity of this system behaves as the smallest energy bandgap tends to close.
arXiv Detail & Related papers (2022-09-26T23:17:39Z) - Optomechanical parametric oscillation of a quantum light-fluid lattice [0.0]
We describe a fully-resonant optomechanical parametric amplifier involving a polariton condensate in a trap lattice quadratically coupled to mechanical modes.
We show that the coherent mechanical oscillations correspond to parametric resonances with threshold condition different to that of standard linear optomechanical self-oscillation.
The observed new phenomena can have applications for the generation of entangled phonon pairs, squeezed mechanical states relevant in sensing and quantum computation, and for the bidirectional frequency conversion of signals in a technologically relevant range.
arXiv Detail & Related papers (2021-12-30T23:59:43Z) - Entanglement Limits in Hybrid Spin-Mechanical Systems [0.0]
We find that the spin cavity entanglement saturates to a particular value when no mechanics are involved.
The entanglement reaches its maximum when the effective resonance frequency and bandwidth of the cavity match the spin system.
arXiv Detail & Related papers (2021-08-30T13:10:48Z) - Energy-level-attraction and heating-resistant-cooling of mechanical
resonators with exceptional points [3.167554518801207]
We study the energy-level evolution and ground-state cooling of mechanical resonators under a synthetic phononic gauge field.
We propose a heating-resistant ground-state cooling based on the nonreciprocal phonon transport.
arXiv Detail & Related papers (2020-11-27T07:26:25Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Cat states in a driven superfluid: role of signal shape and switching
protocol [62.997667081978825]
We investigate the behavior of a one-dimensional Bose-Hubbard model whose kinetic energy is made to oscillate with zero time-average.
We analyze the robustness of this unconventional ground state against variations of a number of system parameters.
arXiv Detail & Related papers (2020-05-11T15:15:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.