Deformed Implicit Field: Modeling 3D Shapes with Learned Dense
Correspondence
- URL: http://arxiv.org/abs/2011.13650v3
- Date: Mon, 29 Mar 2021 10:46:14 GMT
- Title: Deformed Implicit Field: Modeling 3D Shapes with Learned Dense
Correspondence
- Authors: Yu Deng, Jiaolong Yang, Xin Tong
- Abstract summary: We propose a novel Deformed Implicit Field representation for modeling 3D shapes of a category.
Our neural network, dubbed DIF-Net, jointly learns a shape latent space and these fields for 3D objects belonging to a category.
Experiments show that DIF-Net not only produces high-fidelity 3D shapes but also builds high-quality dense correspondences across different shapes.
- Score: 30.849927968528238
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel Deformed Implicit Field (DIF) representation for modeling
3D shapes of a category and generating dense correspondences among shapes. With
DIF, a 3D shape is represented by a template implicit field shared across the
category, together with a 3D deformation field and a correction field dedicated
for each shape instance. Shape correspondences can be easily established using
their deformation fields. Our neural network, dubbed DIF-Net, jointly learns a
shape latent space and these fields for 3D objects belonging to a category
without using any correspondence or part label. The learned DIF-Net can also
provides reliable correspondence uncertainty measurement reflecting shape
structure discrepancy. Experiments show that DIF-Net not only produces
high-fidelity 3D shapes but also builds high-quality dense correspondences
across different shapes. We also demonstrate several applications such as
texture transfer and shape editing, where our method achieves compelling
results that cannot be achieved by previous methods.
Related papers
- NeuSDFusion: A Spatial-Aware Generative Model for 3D Shape Completion, Reconstruction, and Generation [52.772319840580074]
3D shape generation aims to produce innovative 3D content adhering to specific conditions and constraints.
Existing methods often decompose 3D shapes into a sequence of localized components, treating each element in isolation.
We introduce a novel spatial-aware 3D shape generation framework that leverages 2D plane representations for enhanced 3D shape modeling.
arXiv Detail & Related papers (2024-03-27T04:09:34Z) - Explorable Mesh Deformation Subspaces from Unstructured Generative
Models [53.23510438769862]
Deep generative models of 3D shapes often feature continuous latent spaces that can be used to explore potential variations.
We present a method to explore variations among a given set of landmark shapes by constructing a mapping from an easily-navigable 2D exploration space to a subspace of a pre-trained generative model.
arXiv Detail & Related papers (2023-10-11T18:53:57Z) - Geometrically Consistent Partial Shape Matching [50.29468769172704]
Finding correspondences between 3D shapes is a crucial problem in computer vision and graphics.
An often neglected but essential property of matching geometrics is consistency.
We propose a novel integer linear programming partial shape matching formulation.
arXiv Detail & Related papers (2023-09-10T12:21:42Z) - Hybrid Neural Diffeomorphic Flow for Shape Representation and Generation
via Triplane [16.684276798449115]
HNDF is a method that implicitly learns the underlying representation and decomposes intricate dense correspondences into explicitly axis-aligned triplane features.
Unlike conventional approaches that directly generate new 3D shapes, we explore the idea of shape generation with deformed template shape via diffeomorphic flows.
arXiv Detail & Related papers (2023-07-04T23:28:01Z) - Michelangelo: Conditional 3D Shape Generation based on Shape-Image-Text
Aligned Latent Representation [47.945556996219295]
We present a novel alignment-before-generation approach to generate 3D shapes based on 2D images or texts.
Our framework comprises two models: a Shape-Image-Text-Aligned Variational Auto-Encoder (SITA-VAE) and a conditional Aligned Shape Latent Diffusion Model (ASLDM)
arXiv Detail & Related papers (2023-06-29T17:17:57Z) - Topologically-Aware Deformation Fields for Single-View 3D Reconstruction [30.738926104317514]
We present a new framework for learning 3D object shapes and dense cross-object 3D correspondences from just an unaligned category-specific image collection.
The 3D shapes are generated implicitly as deformations to a category-specific signed distance field.
Our approach, dubbed TARS, achieves state-of-the-art reconstruction fidelity on several datasets.
arXiv Detail & Related papers (2022-05-12T17:59:59Z) - Template NeRF: Towards Modeling Dense Shape Correspondences from
Category-Specific Object Images [4.662583832063716]
We present neural radiance fields (NeRF) with templates, dubbed template-NeRF, for modeling appearance and geometry.
We generate dense shape correspondences simultaneously among objects of the same category from only multi-view posed images.
The learned dense correspondences can be readily used for various image-based tasks such as keypoint detection, part segmentation, and texture transfer.
arXiv Detail & Related papers (2021-11-08T02:16:48Z) - Learning Canonical 3D Object Representation for Fine-Grained Recognition [77.33501114409036]
We propose a novel framework for fine-grained object recognition that learns to recover object variation in 3D space from a single image.
We represent an object as a composition of 3D shape and its appearance, while eliminating the effect of camera viewpoint.
By incorporating 3D shape and appearance jointly in a deep representation, our method learns the discriminative representation of the object.
arXiv Detail & Related papers (2021-08-10T12:19:34Z) - Deep Implicit Templates for 3D Shape Representation [70.9789507686618]
We propose a new 3D shape representation that supports explicit correspondence reasoning in deep implicit representations.
Our key idea is to formulate DIFs as conditional deformations of a template implicit function.
We show that our method can not only learn a common implicit template for a collection of shapes, but also establish dense correspondences across all the shapes simultaneously without any supervision.
arXiv Detail & Related papers (2020-11-30T06:01:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.