Template NeRF: Towards Modeling Dense Shape Correspondences from
Category-Specific Object Images
- URL: http://arxiv.org/abs/2111.04237v1
- Date: Mon, 8 Nov 2021 02:16:48 GMT
- Title: Template NeRF: Towards Modeling Dense Shape Correspondences from
Category-Specific Object Images
- Authors: Jianfei Guo, Zhiyuan Yang, Xi Lin, Qingfu Zhang
- Abstract summary: We present neural radiance fields (NeRF) with templates, dubbed template-NeRF, for modeling appearance and geometry.
We generate dense shape correspondences simultaneously among objects of the same category from only multi-view posed images.
The learned dense correspondences can be readily used for various image-based tasks such as keypoint detection, part segmentation, and texture transfer.
- Score: 4.662583832063716
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present neural radiance fields (NeRF) with templates, dubbed
Template-NeRF, for modeling appearance and geometry and generating dense shape
correspondences simultaneously among objects of the same category from only
multi-view posed images, without the need of either 3D supervision or
ground-truth correspondence knowledge. The learned dense correspondences can be
readily used for various image-based tasks such as keypoint detection, part
segmentation, and texture transfer that previously require specific model
designs. Our method can also accommodate annotation transfer in a one or
few-shot manner, given only one or a few instances of the category. Using
periodic activation and feature-wise linear modulation (FiLM) conditioning, we
introduce deep implicit templates on 3D data into the 3D-aware image synthesis
pipeline NeRF. By representing object instances within the same category as
shape and appearance variation of a shared NeRF template, our proposed method
can achieve dense shape correspondences reasoning on images for a wide range of
object classes. We demonstrate the results and applications on both synthetic
and real-world data with competitive results compared with other methods based
on 3D information.
Related papers
- CA$^2$T-Net: Category-Agnostic 3D Articulation Transfer from Single
Image [41.70960551470232]
We present a neural network approach to transfer the motion from a single image of an articulated object to a rest-state (i.e., unarticulated) 3D model.
Our network learns to predict the object's pose, part segmentation, and corresponding motion parameters to reproduce the articulation shown in the input image.
arXiv Detail & Related papers (2023-01-05T18:57:12Z) - Generative Deformable Radiance Fields for Disentangled Image Synthesis
of Topology-Varying Objects [52.46838926521572]
3D-aware generative models have demonstrated their superb performance to generate 3D neural radiance fields (NeRF) from a collection of monocular 2D images.
We propose a generative model for synthesizing radiance fields of topology-varying objects with disentangled shape and appearance variations.
arXiv Detail & Related papers (2022-09-09T08:44:06Z) - Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance
Consistency [59.427074701985795]
Single-view reconstruction typically rely on viewpoint annotations, silhouettes, the absence of background, multiple views of the same instance, a template shape, or symmetry.
We avoid all of these supervisions and hypotheses by leveraging explicitly the consistency between images of different object instances.
Our main contributions are two approaches to leverage cross-instance consistency: (i) progressive conditioning, a training strategy to gradually specialize the model from category to instances in a curriculum learning fashion; (ii) swap reconstruction, a loss enforcing consistency between instances having similar shape or texture.
arXiv Detail & Related papers (2022-04-21T17:47:35Z) - Pixel2Mesh++: 3D Mesh Generation and Refinement from Multi-View Images [82.32776379815712]
We study the problem of shape generation in 3D mesh representation from a small number of color images with or without camera poses.
We adopt to further improve the shape quality by leveraging cross-view information with a graph convolution network.
Our model is robust to the quality of the initial mesh and the error of camera pose, and can be combined with a differentiable function for test-time optimization.
arXiv Detail & Related papers (2022-04-21T03:42:31Z) - Multi-Category Mesh Reconstruction From Image Collections [90.24365811344987]
We present an alternative approach that infers the textured mesh of objects combining a series of deformable 3D models and a set of instance-specific deformation, pose, and texture.
Our method is trained with images of multiple object categories using only foreground masks and rough camera poses as supervision.
Experiments show that the proposed framework can distinguish between different object categories and learn category-specific shape priors in an unsupervised manner.
arXiv Detail & Related papers (2021-10-21T16:32:31Z) - FiG-NeRF: Figure-Ground Neural Radiance Fields for 3D Object Category
Modelling [11.432178728985956]
We use Neural Radiance Fields (NeRF) to learn high quality 3D object category models from collections of input images.
We show that this method can learn accurate 3D object category models using only photometric supervision and casually captured images.
arXiv Detail & Related papers (2021-04-17T01:38:54Z) - Deep Implicit Templates for 3D Shape Representation [70.9789507686618]
We propose a new 3D shape representation that supports explicit correspondence reasoning in deep implicit representations.
Our key idea is to formulate DIFs as conditional deformations of a template implicit function.
We show that our method can not only learn a common implicit template for a collection of shapes, but also establish dense correspondences across all the shapes simultaneously without any supervision.
arXiv Detail & Related papers (2020-11-30T06:01:49Z) - Deformed Implicit Field: Modeling 3D Shapes with Learned Dense
Correspondence [30.849927968528238]
We propose a novel Deformed Implicit Field representation for modeling 3D shapes of a category.
Our neural network, dubbed DIF-Net, jointly learns a shape latent space and these fields for 3D objects belonging to a category.
Experiments show that DIF-Net not only produces high-fidelity 3D shapes but also builds high-quality dense correspondences across different shapes.
arXiv Detail & Related papers (2020-11-27T10:45:26Z) - Building 3D Morphable Models from a Single Scan [3.472931603805115]
We propose a method for constructing generative models of 3D objects from a single 3D mesh.
Our method produces a 3D morphable model that represents shape and albedo in terms of Gaussian processes.
We show that our approach can be used to perform face recognition using only a single 3D scan.
arXiv Detail & Related papers (2020-11-24T23:08:14Z) - Canonical 3D Deformer Maps: Unifying parametric and non-parametric
methods for dense weakly-supervised category reconstruction [79.98689027127855]
We propose a new representation of the 3D shape of common object categories that can be learned from a collection of 2D images of independent objects.
Our method builds in a novel way on concepts from parametric deformation models, non-parametric 3D reconstruction, and canonical embeddings.
It achieves state-of-the-art results in dense 3D reconstruction on public in-the-wild datasets of faces, cars, and birds.
arXiv Detail & Related papers (2020-08-28T15:44:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.