Two-excitation routing via linear quantum channels
- URL: http://arxiv.org/abs/2011.13711v1
- Date: Fri, 27 Nov 2020 12:50:17 GMT
- Title: Two-excitation routing via linear quantum channels
- Authors: Tony John George Apollaro and Wayne Jordan Chetcuti
- Abstract summary: We apply the perturbative transfer scheme to a two-excitation routing protocol on a network where multiple two-receivers block are coupled to a linear chain.
We find that the protocol allows for efficient two-excitation routing on a fermionic network, although for a spin-$frac12$ network only a limited region of the network is suitable for high-quality routing.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Routing quantum information among different nodes in a network is a
fundamental prerequisite for a quantum internet. While single-qubit routing has
been largely addressed, many-qubit routing protocols have not been intensively
investigated so far. Building on the many-excitation transfer protocol in
arXiv:1911.12211, we apply the perturbative transfer scheme to a two-excitation
routing protocol on a network where multiple two-receivers block are coupled to
a linear chain. We address both the case of switchable and permanent couplings
between the receivers and the chain. We find that the protocol allows for
efficient two-excitation routing on a fermionic network, although for a
spin-$\frac{1}{2}$ network only a limited region of the network is suitable for
high-quality routing.
Related papers
- Entanglement Routing in Quantum Networks: A Comprehensive Survey [2.624902795082451]
Entanglement routing in near-term quantum networks consists of choosing the optimal sequence of short-range entanglements to combine.
We classify and discuss the studied quantum routing schemes into reactive, proactive, opportunistic, and virtual routing.
arXiv Detail & Related papers (2024-08-02T12:48:40Z) - Entangled Pair Resource Allocation under Uncertain Fidelity Requirements [59.83361663430336]
In quantum networks, effective entanglement routing facilitates communication between quantum source and quantum destination nodes.
We propose a resource allocation model for entangled pairs and an entanglement routing model with a fidelity guarantee.
Our proposed model can reduce the total cost by at least 20% compared to the baseline model.
arXiv Detail & Related papers (2023-04-10T07:16:51Z) - Multi-User Entanglement Distribution in Quantum Networks Using Multipath
Routing [55.2480439325792]
We propose three protocols that increase the entanglement rate of multi-user applications by leveraging multipath routing.
The protocols are evaluated on quantum networks with NISQ constraints, including limited quantum memories and probabilistic entanglement generation.
arXiv Detail & Related papers (2023-03-06T18:06:00Z) - Multiparty Entanglement Routing in Quantum Networks [0.0]
A protocol is proposed for extracting maximally entangled (GHZn) states for any number of parties in quantum networks.
The protocol only requires local measurements at the network nodes and just a single qubit memory per user.
arXiv Detail & Related papers (2022-11-12T15:40:34Z) - A scheme for multipartite entanglement distribution via separable
carriers [68.8204255655161]
We develop a strategy for entanglement distribution via separable carriers that can be applied to any number of network nodes.
We show that our protocol results in multipartite entanglement, while the carrier mediating the process is always in a separable state with respect to the network.
arXiv Detail & Related papers (2022-06-20T10:50:45Z) - Fidelity-Guarantee Entanglement Routing in Quantum Networks [64.49733801962198]
Entanglement routing establishes remote entanglement connection between two arbitrary nodes.
We propose purification-enabled entanglement routing designs to provide fidelity guarantee for multiple Source-Destination (SD) pairs in quantum networks.
arXiv Detail & Related papers (2021-11-15T14:07:22Z) - Optimized Quantum Networks [68.8204255655161]
Quantum networks offer the possibility to generate different kinds of entanglement prior to network requests.
We utilize this to design entanglement-based quantum networks tailored to their desired functionality.
arXiv Detail & Related papers (2021-07-21T18:00:07Z) - Entanglement Distribution in Multi-Platform Buffered-Router-Assisted
Frequency-Multiplexed Automated Repeater Chains [0.0]
We propose a quantum network architecture based on quantum processing devices based on NV$-$ colour centers.
Long-distance entanglement distribution is enabled by spectrally-multiplexed quantum repeaters based on rare-earth ion-doped crystals and imperfect entangled photon-pair sources.
arXiv Detail & Related papers (2021-06-08T20:25:43Z) - Qubit Routing using Graph Neural Network aided Monte Carlo Tree Search [0.0]
Near-term quantum hardware can support two-qubit operations only on the qubits that can interact with each other.
We propose a procedure for qubit routing that is architecture agnostic and that outperforms other available routing implementations on various circuit benchmarks.
arXiv Detail & Related papers (2021-04-01T17:08:28Z) - Purification and Entanglement Routing on Quantum Networks [55.41644538483948]
A quantum network equipped with imperfect channel fidelities and limited memory storage time can distribute entanglement between users.
We introduce effectives enabling fast path-finding algorithms for maximizing entanglement shared between two nodes on a quantum network.
arXiv Detail & Related papers (2020-11-23T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.