Variational analysis of driven-dissipative bosonic fields
- URL: http://arxiv.org/abs/2011.13746v1
- Date: Fri, 27 Nov 2020 14:23:42 GMT
- Title: Variational analysis of driven-dissipative bosonic fields
- Authors: Tim Pistorius and Hendrik Weimer
- Abstract summary: We present a method to perform a variational analysis of the quantum master equation for driven-disspative bosonic fields with arbitrary large occupation numbers.
Our approach combines the P representation of the density matrix and the variational principle for open quantum system.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a method to perform a variational analysis of the quantum master
equation for driven-disspative bosonic fields with arbitrary large occupation
numbers. Our approach combines the P representation of the density matrix and
the variational principle for open quantum system. We benchmark the method by
comparing it to wave-function Monte-Carlo simulations and the solution of the
Maxwell-Bloch equation for the Jaynes-Cummings model. Furthermore, we study a
model describing Rydberg polaritons in a cavity field and introduce an
additional set of variational paramaters to describe correlations between
different modes.
Related papers
- Variational Equations-of-States for Interacting Quantum Hamiltonians [0.0]
We present variational equations of state (VES) for pure states of an interacting quantum Hamiltonian.
VES can be expressed in terms of the variation of the density operators or static correlation functions.
We present three nontrivial applications of the VES.
arXiv Detail & Related papers (2023-07-03T07:51:15Z) - Calculating non-linear response functions for multi-dimensional
electronic spectroscopy using dyadic non-Markovian quantum state diffusion [68.8204255655161]
We present a methodology for simulating multi-dimensional electronic spectra of molecular aggregates with coupling electronic excitation to a structured environment.
A crucial aspect of our approach is that we propagate the NMQSD equation in a doubled system Hilbert space but with the same noise.
arXiv Detail & Related papers (2022-07-06T15:30:38Z) - Counting Phases and Faces Using Bayesian Thermodynamic Integration [77.34726150561087]
We introduce a new approach to reconstruction of the thermodynamic functions and phase boundaries in two-parametric statistical mechanics systems.
We use the proposed approach to accurately reconstruct the partition functions and phase diagrams of the Ising model and the exactly solvable non-equilibrium TASEP.
arXiv Detail & Related papers (2022-05-18T17:11:23Z) - Fermionic approach to variational quantum simulation of Kitaev spin
models [50.92854230325576]
Kitaev spin models are well known for being exactly solvable in a certain parameter regime via a mapping to free fermions.
We use classical simulations to explore a novel variational ansatz that takes advantage of this fermionic representation.
We also comment on the implications of our results for simulating non-Abelian anyons on quantum computers.
arXiv Detail & Related papers (2022-04-11T18:00:01Z) - Interaction of quantum systems with single pulses of quantized radiation [68.8204255655161]
We describe the interaction of a propagating pulse of quantum radiation with a localized quantum system.
By transformation to an appropriate picture, we identify the usual Jaynes-Cummings Hamiltonian between the scatterer and a superposition of the initial and final mode.
The transformed master equation offers important insights into the system dynamics and it permits numerically efficient solutions.
arXiv Detail & Related papers (2022-03-14T20:23:23Z) - Spin-Holstein models in trapped-ion systems [1.3764085113103222]
We study a spin-Holstein model that can be implemented with arrays of ions confined by individual microtraps.
In our numerical study, we employ a combination of complementary approaches, based on non-Gaussian variational ansatz states and matrix product states.
arXiv Detail & Related papers (2021-08-31T10:20:17Z) - Determination of the critical exponents in dissipative phase
transitions: Coherent anomaly approach [51.819912248960804]
We propose a generalization of the coherent anomaly method to extract the critical exponents of a phase transition occurring in the steady-state of an open quantum many-body system.
arXiv Detail & Related papers (2021-03-12T13:16:18Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Alternative quantisation condition for wavepacket dynamics in a
hyperbolic double well [0.0]
We propose an analytical approach for computing the eigenspectrum and corresponding eigenstates of a hyperbolic double well potential of arbitrary height or width.
Considering initial wave packets of different widths and peak locations, we compute autocorrelation functions and quasiprobability distributions.
arXiv Detail & Related papers (2020-09-18T10:29:04Z) - Non-Markovianity of Quantum Brownian Motion [0.0]
We study quantum non-Markovian dynamics of the Caldeira-Leggett model, a prototypical model for quantum Brownian motion.
A comparison of our results with the corresponding results for the spin-boson problem show a remarkable similarity in the structure of non-Markovian behavior of the two paradigmatic models.
arXiv Detail & Related papers (2020-07-06T16:35:09Z) - Certified variational quantum algorithms for eigenstate preparation [0.0]
We develop a means to certify the termination of variational algorithms.
We demonstrate our approach by applying it to three models: the transverse field Ising model, the model of one-dimensional spinless fermions with competing interactions, and the Schwinger model of quantum electrodynamics.
arXiv Detail & Related papers (2020-06-23T18:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.