Counting Phases and Faces Using Bayesian Thermodynamic Integration
- URL: http://arxiv.org/abs/2206.07494v1
- Date: Wed, 18 May 2022 17:11:23 GMT
- Title: Counting Phases and Faces Using Bayesian Thermodynamic Integration
- Authors: Alexander Lobashev, Mikhail V. Tamm
- Abstract summary: We introduce a new approach to reconstruction of the thermodynamic functions and phase boundaries in two-parametric statistical mechanics systems.
We use the proposed approach to accurately reconstruct the partition functions and phase diagrams of the Ising model and the exactly solvable non-equilibrium TASEP.
- Score: 77.34726150561087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a new approach to reconstruction of the thermodynamic functions
and phase boundaries in two-parametric statistical mechanics systems. Our
method is based on expressing the Fisher metric in terms of the posterior
distributions over a space of external parameters and approximating the metric
field by a Hessian of a convex function. We use the proposed approach to
accurately reconstruct the partition functions and phase diagrams of the Ising
model and the exactly solvable non-equilibrium TASEP without any a priori
knowledge about microscopic rules of the models. We also demonstrate how our
approach can be used to visualize the latent space of StyleGAN models and
evaluate the variability of the generated images.
Related papers
- Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces a novel family of deep dynamical models designed to represent continuous-time sequence data.
We train the model using maximum likelihood estimation with Markov chain Monte Carlo.
Experiments on oscillating systems, videos and real-world state sequences (MuJoCo) illustrate that ODEs with the learnable energy-based prior outperform existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - von Mises Quasi-Processes for Bayesian Circular Regression [57.88921637944379]
We explore a family of expressive and interpretable distributions over circle-valued random functions.
The resulting probability model has connections with continuous spin models in statistical physics.
For posterior inference, we introduce a new Stratonovich-like augmentation that lends itself to fast Markov Chain Monte Carlo sampling.
arXiv Detail & Related papers (2024-06-19T01:57:21Z) - Geometric Neural Diffusion Processes [55.891428654434634]
We extend the framework of diffusion models to incorporate a series of geometric priors in infinite-dimension modelling.
We show that with these conditions, the generative functional model admits the same symmetry.
arXiv Detail & Related papers (2023-07-11T16:51:38Z) - Conditional Korhunen-Lo\'{e}ve regression model with Basis Adaptation
for high-dimensional problems: uncertainty quantification and inverse
modeling [62.997667081978825]
We propose a methodology for improving the accuracy of surrogate models of the observable response of physical systems.
We apply the proposed methodology to constructing surrogate models via the Basis Adaptation (BA) method of the stationary hydraulic head response.
arXiv Detail & Related papers (2023-07-05T18:14:38Z) - Object based Bayesian full-waveform inversion for shear elastography [0.0]
We develop a computational framework to quantify uncertainty in shear elastography imaging of anomalies in tissues.
We find the posterior probability of parameter fields representing the geometry of the anomalies and their shear moduli.
We demonstrate the approach on synthetic two dimensional tests with smooth and irregular shapes.
arXiv Detail & Related papers (2023-05-11T08:25:25Z) - Free-Form Variational Inference for Gaussian Process State-Space Models [21.644570034208506]
We propose a new method for inference in Bayesian GPSSMs.
Our method is based on freeform variational inference via inducing Hamiltonian Monte Carlo.
We show that our approach can learn transition dynamics and latent states more accurately than competing methods.
arXiv Detail & Related papers (2023-02-20T11:34:16Z) - Functional Mixtures-of-Experts [0.24578723416255746]
We consider the statistical analysis of heterogeneous data for prediction in situations where the observations include functions.
We first present a new family of ME models, named functional ME (FME) in which the predictors are potentially noisy observations.
We develop dedicated expectation--maximization algorithms for Lasso-like (EM-Lasso) regularized maximum-likelihood parameter estimation strategies to fit the models.
arXiv Detail & Related papers (2022-02-04T17:32:28Z) - A Model for Multi-View Residual Covariances based on Perspective
Deformation [88.21738020902411]
We derive a model for the covariance of the visual residuals in multi-view SfM, odometry and SLAM setups.
We validate our model with synthetic and real data and integrate it into photometric and feature-based Bundle Adjustment.
arXiv Detail & Related papers (2022-02-01T21:21:56Z) - Variational Inference for Continuous-Time Switching Dynamical Systems [29.984955043675157]
We present a model based on an Markov jump process modulating a subordinated diffusion process.
We develop a new continuous-time variational inference algorithm.
We extensively evaluate our algorithm under the model assumption and for real-world examples.
arXiv Detail & Related papers (2021-09-29T15:19:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.