REAL-X -- Robot open-Ended Autonomous Learning Architectures: Achieving
Truly End-to-End Sensorimotor Autonomous Learning Systems
- URL: http://arxiv.org/abs/2011.13880v2
- Date: Wed, 2 Mar 2022 11:37:18 GMT
- Title: REAL-X -- Robot open-Ended Autonomous Learning Architectures: Achieving
Truly End-to-End Sensorimotor Autonomous Learning Systems
- Authors: Emilio Cartoni (1), Davide Montella (1), Jochen Triesch (2), Gianluca
Baldassarre (1) ((1) Institute of Cognitive Sciences and Technologies, (2)
Frankfurt Institute for Advanced Studies)
- Abstract summary: We study the challenges posed by the previously proposed benchmark REAL competition'
We present a set of REAL-X' robot architectures that are able to solve different versions of the benchmark.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Open-ended learning is a core research field of developmental robotics and AI
aiming to build learning machines and robots that can autonomously acquire
knowledge and skills incrementally as infants and children. The first
contribution of this work is to study the challenges posed by the previously
proposed benchmark `REAL competition' aiming to foster the development of truly
open-ended learning robot architectures. The competition involves a simulated
camera-arm robot that: (a) in a first `intrinsic phase' acquires sensorimotor
competence by autonomously interacting with objects; (b) in a second `extrinsic
phase' is tested with tasks unknown in the intrinsic phase to measure the
quality of knowledge previously acquired. This benchmark requires the solution
of multiple challenges usually tackled in isolation, in particular exploration,
sparse-rewards, object learning, generalisation, task/goal self-generation, and
autonomous skill learning. As a second contribution, we present a set of
`REAL-X' robot architectures that are able to solve different versions of the
benchmark, where we progressively release initial simplifications. The
architectures are based on a planning approach that dynamically increases
abstraction, and intrinsic motivations to foster exploration. REAL-X achieves a
good performance level in very demanding conditions. We argue that the REAL
benchmark represents a valuable tool for studying open-ended learning in its
hardest form.
Related papers
- Generalized Robot Learning Framework [10.03174544844559]
We present a low-cost robot learning framework that is both easily reproducible and transferable to various robots and environments.
We demonstrate that deployable imitation learning can be successfully applied even to industrial-grade robots.
arXiv Detail & Related papers (2024-09-18T15:34:31Z) - Imperative Learning: A Self-supervised Neural-Symbolic Learning Framework for Robot Autonomy [31.818923556912495]
We introduce a new self-supervised neural-symbolic (NeSy) computational framework, imperative learning (IL) for robot autonomy.
We formulate IL as a special bilevel optimization (BLO) which enables reciprocal learning over the three modules.
We show that IL can significantly enhance robot autonomy capabilities and we anticipate that it will catalyze further research across diverse domains.
arXiv Detail & Related papers (2024-06-23T12:02:17Z) - A Survey on Robotics with Foundation Models: toward Embodied AI [30.999414445286757]
Recent advances in computer vision, natural language processing, and multi-modality learning have shown that the foundation models have superhuman capabilities for specific tasks.
This survey aims to provide a comprehensive and up-to-date overview of foundation models in robotics, focusing on autonomous manipulation and encompassing high-level planning and low-level control.
arXiv Detail & Related papers (2024-02-04T07:55:01Z) - Stabilizing Contrastive RL: Techniques for Robotic Goal Reaching from
Offline Data [101.43350024175157]
Self-supervised learning has the potential to decrease the amount of human annotation and engineering effort required to learn control strategies.
Our work builds on prior work showing that the reinforcement learning (RL) itself can be cast as a self-supervised problem.
We demonstrate that a self-supervised RL algorithm based on contrastive learning can solve real-world, image-based robotic manipulation tasks.
arXiv Detail & Related papers (2023-06-06T01:36:56Z) - Bridging Active Exploration and Uncertainty-Aware Deployment Using
Probabilistic Ensemble Neural Network Dynamics [11.946807588018595]
This paper presents a unified model-based reinforcement learning framework that bridges active exploration and uncertainty-aware deployment.
The two opposing tasks of exploration and deployment are optimized through state-of-the-art sampling-based MPC.
We conduct experiments on both autonomous vehicles and wheeled robots, showing promising results for both exploration and deployment.
arXiv Detail & Related papers (2023-05-20T17:20:12Z) - Autonomous Open-Ended Learning of Tasks with Non-Stationary
Interdependencies [64.0476282000118]
Intrinsic motivations have proven to generate a task-agnostic signal to properly allocate the training time amongst goals.
While the majority of works in the field of intrinsically motivated open-ended learning focus on scenarios where goals are independent from each other, only few of them studied the autonomous acquisition of interdependent tasks.
In particular, we first deepen the analysis of a previous system, showing the importance of incorporating information about the relationships between tasks at a higher level of the architecture.
Then we introduce H-GRAIL, a new system that extends the previous one by adding a new learning layer to store the autonomously acquired sequences
arXiv Detail & Related papers (2022-05-16T10:43:01Z) - From SLAM to Situational Awareness: Challenges and Survey [0.0]
The capability of a mobile robot to efficiently and safely perform complex missions is limited by its knowledge of the environment.
Advanced reasoning, decision-making, and execution skills enable an intelligent agent to act autonomously in unknown environments.
This paper investigates each aspect of Situational Awareness, surveying the state-of-the-art robotics algorithms that cover them.
arXiv Detail & Related papers (2021-10-01T09:00:34Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
The ability to recognize human partners is an important social skill to build personalized and long-term human-robot interactions.
Deep learning networks have achieved state-of-the-art results and demonstrated to be suitable tools to address such a task.
One solution is to make robots learn from their first-hand sensory data with self-supervision.
arXiv Detail & Related papers (2021-03-16T13:50:24Z) - Integrated Benchmarking and Design for Reproducible and Accessible
Evaluation of Robotic Agents [61.36681529571202]
We describe a new concept for reproducible robotics research that integrates development and benchmarking.
One of the central components of this setup is the Duckietown Autolab, a standardized setup that is itself relatively low-cost and reproducible.
We validate the system by analyzing the repeatability of experiments conducted using the infrastructure and show that there is low variance across different robot hardware and across different remote labs.
arXiv Detail & Related papers (2020-09-09T15:31:29Z) - SAPIEN: A SimulAted Part-based Interactive ENvironment [77.4739790629284]
SAPIEN is a realistic and physics-rich simulated environment that hosts a large-scale set for articulated objects.
We evaluate state-of-the-art vision algorithms for part detection and motion attribute recognition as well as demonstrate robotic interaction tasks.
arXiv Detail & Related papers (2020-03-19T00:11:34Z) - Scalable Multi-Task Imitation Learning with Autonomous Improvement [159.9406205002599]
We build an imitation learning system that can continuously improve through autonomous data collection.
We leverage the robot's own trials as demonstrations for tasks other than the one that the robot actually attempted.
In contrast to prior imitation learning approaches, our method can autonomously collect data with sparse supervision for continuous improvement.
arXiv Detail & Related papers (2020-02-25T18:56:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.