A Retrospective on the Robot Air Hockey Challenge: Benchmarking Robust, Reliable, and Safe Learning Techniques for Real-world Robotics
- URL: http://arxiv.org/abs/2411.05718v1
- Date: Fri, 08 Nov 2024 17:20:47 GMT
- Title: A Retrospective on the Robot Air Hockey Challenge: Benchmarking Robust, Reliable, and Safe Learning Techniques for Real-world Robotics
- Authors: Puze Liu, Jonas Günster, Niklas Funk, Simon Gröger, Dong Chen, Haitham Bou-Ammar, Julius Jankowski, Ante Marić, Sylvain Calinon, Andrej Orsula, Miguel Olivares-Mendez, Hongyi Zhou, Rudolf Lioutikov, Gerhard Neumann, Amarildo Likmeta Amirhossein Zhalehmehrabi, Thomas Bonenfant, Marcello Restelli, Davide Tateo, Ziyuan Liu, Jan Peters,
- Abstract summary: We organized the Robot Air Hockey Challenge at the NeurIPS 2023 conference.
We focus on practical challenges in robotics, such as the sim-to-real gap, low-level control issues, safety problems, real-time requirements, and the limited availability of real-world data.
Results show that solutions combining learning-based approaches with prior knowledge outperform those relying solely on data when real-world deployment is challenging.
- Score: 53.33976793493801
- License:
- Abstract: Machine learning methods have a groundbreaking impact in many application domains, but their application on real robotic platforms is still limited. Despite the many challenges associated with combining machine learning technology with robotics, robot learning remains one of the most promising directions for enhancing the capabilities of robots. When deploying learning-based approaches on real robots, extra effort is required to address the challenges posed by various real-world factors. To investigate the key factors influencing real-world deployment and to encourage original solutions from different researchers, we organized the Robot Air Hockey Challenge at the NeurIPS 2023 conference. We selected the air hockey task as a benchmark, encompassing low-level robotics problems and high-level tactics. Different from other machine learning-centric benchmarks, participants need to tackle practical challenges in robotics, such as the sim-to-real gap, low-level control issues, safety problems, real-time requirements, and the limited availability of real-world data. Furthermore, we focus on a dynamic environment, removing the typical assumption of quasi-static motions of other real-world benchmarks. The competition's results show that solutions combining learning-based approaches with prior knowledge outperform those relying solely on data when real-world deployment is challenging. Our ablation study reveals which real-world factors may be overlooked when building a learning-based solution. The successful real-world air hockey deployment of best-performing agents sets the foundation for future competitions and follow-up research directions.
Related papers
- $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
We propose a novel flow matching architecture built on top of a pre-trained vision-language model (VLM) to inherit Internet-scale semantic knowledge.
We evaluate our model in terms of its ability to perform tasks in zero shot after pre-training, follow language instructions from people, and its ability to acquire new skills via fine-tuning.
arXiv Detail & Related papers (2024-10-31T17:22:30Z) - Generalized Robot Learning Framework [10.03174544844559]
We present a low-cost robot learning framework that is both easily reproducible and transferable to various robots and environments.
We demonstrate that deployable imitation learning can be successfully applied even to industrial-grade robots.
arXiv Detail & Related papers (2024-09-18T15:34:31Z) - Commonsense Reasoning for Legged Robot Adaptation with Vision-Language Models [81.55156507635286]
Legged robots are physically capable of navigating a diverse variety of environments and overcoming a wide range of obstructions.
Current learning methods often struggle with generalization to the long tail of unexpected situations without heavy human supervision.
We propose a system, VLM-Predictive Control (VLM-PC), combining two key components that we find to be crucial for eliciting on-the-fly, adaptive behavior selection.
arXiv Detail & Related papers (2024-07-02T21:00:30Z) - Autonomous Robotic Reinforcement Learning with Asynchronous Human
Feedback [27.223725464754853]
GEAR enables robots to be placed in real-world environments and left to train autonomously without interruption.
System streams robot experience to a web interface only requiring occasional asynchronous feedback from remote, crowdsourced, non-expert humans.
arXiv Detail & Related papers (2023-10-31T16:43:56Z) - Real Robot Challenge 2022: Learning Dexterous Manipulation from Offline
Data in the Real World [38.54892412474853]
The Real Robot Challenge 2022 served as a bridge between the reinforcement learning and robotics communities.
We asked the participants to learn two dexterous manipulation tasks involving pushing, grasping, and in-hand orientation from provided real-robot datasets.
An extensive software documentation and an initial stage based on a simulation of the real set-up made the competition particularly accessible.
arXiv Detail & Related papers (2023-08-15T12:40:56Z) - Dual-Arm Adversarial Robot Learning [0.6091702876917281]
We propose dual-arm settings as platforms for robot learning.
We will discuss the potential benefits of this setup as well as the challenges and research directions that can be pursued.
arXiv Detail & Related papers (2021-10-15T12:51:57Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
Many multi-task reinforcement learning efforts assume the robot can collect data from all tasks at all times.
In this work, we study a practical sequential multi-task RL problem motivated by the practical constraints of physical robotic systems.
We derive an approach that effectively leverages the data and policies learned for previous tasks to cumulatively grow the robot's skill-set.
arXiv Detail & Related papers (2021-09-19T18:00:51Z) - Low Dimensional State Representation Learning with Robotics Priors in
Continuous Action Spaces [8.692025477306212]
Reinforcement learning algorithms have proven to be capable of solving complicated robotics tasks in an end-to-end fashion.
We propose a framework combining the learning of a low-dimensional state representation, from high-dimensional observations coming from the robot's raw sensory readings, with the learning of the optimal policy.
arXiv Detail & Related papers (2021-07-04T15:42:01Z) - Bayesian Meta-Learning for Few-Shot Policy Adaptation Across Robotic
Platforms [60.59764170868101]
Reinforcement learning methods can achieve significant performance but require a large amount of training data collected on the same robotic platform.
We formulate it as a few-shot meta-learning problem where the goal is to find a model that captures the common structure shared across different robotic platforms.
We experimentally evaluate our framework on a simulated reaching and a real-robot picking task using 400 simulated robots.
arXiv Detail & Related papers (2021-03-05T14:16:20Z) - The Ingredients of Real-World Robotic Reinforcement Learning [71.92831985295163]
We discuss the elements that are needed for a robotic learning system that can continually and autonomously improve with data collected in the real world.
We propose a particular instantiation of such a system, using dexterous manipulation as our case study.
We demonstrate that our complete system can learn without any human intervention, acquiring a variety of vision-based skills with a real-world three-fingered hand.
arXiv Detail & Related papers (2020-04-27T03:36:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.