D-NeRF: Neural Radiance Fields for Dynamic Scenes
- URL: http://arxiv.org/abs/2011.13961v1
- Date: Fri, 27 Nov 2020 19:06:50 GMT
- Title: D-NeRF: Neural Radiance Fields for Dynamic Scenes
- Authors: Albert Pumarola, Enric Corona, Gerard Pons-Moll, Francesc
Moreno-Noguer
- Abstract summary: We introduce D-NeRF, a method that extends neural radiance fields to a dynamic domain.
D-NeRF reconstructs images of objects under rigid and non-rigid motions from a camera moving around the scene.
We demonstrate the effectiveness of our approach on scenes with objects under rigid, articulated and non-rigid motions.
- Score: 72.75686949608624
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural rendering techniques combining machine learning with geometric
reasoning have arisen as one of the most promising approaches for synthesizing
novel views of a scene from a sparse set of images. Among these, stands out the
Neural radiance fields (NeRF), which trains a deep network to map 5D input
coordinates (representing spatial location and viewing direction) into a volume
density and view-dependent emitted radiance. However, despite achieving an
unprecedented level of photorealism on the generated images, NeRF is only
applicable to static scenes, where the same spatial location can be queried
from different images. In this paper we introduce D-NeRF, a method that extends
neural radiance fields to a dynamic domain, allowing to reconstruct and render
novel images of objects under rigid and non-rigid motions from a \emph{single}
camera moving around the scene. For this purpose we consider time as an
additional input to the system, and split the learning process in two main
stages: one that encodes the scene into a canonical space and another that maps
this canonical representation into the deformed scene at a particular time.
Both mappings are simultaneously learned using fully-connected networks. Once
the networks are trained, D-NeRF can render novel images, controlling both the
camera view and the time variable, and thus, the object movement. We
demonstrate the effectiveness of our approach on scenes with objects under
rigid, articulated and non-rigid motions. Code, model weights and the dynamic
scenes dataset will be released.
Related papers
- DistillNeRF: Perceiving 3D Scenes from Single-Glance Images by Distilling Neural Fields and Foundation Model Features [65.8738034806085]
DistillNeRF is a self-supervised learning framework for understanding 3D environments in autonomous driving scenes.
Our method is a generalizable feedforward model that predicts a rich neural scene representation from sparse, single-frame multi-view camera inputs.
arXiv Detail & Related papers (2024-06-17T21:15:13Z) - Neural Groundplans: Persistent Neural Scene Representations from a
Single Image [90.04272671464238]
We present a method to map 2D image observations of a scene to a persistent 3D scene representation.
We propose conditional neural groundplans as persistent and memory-efficient scene representations.
arXiv Detail & Related papers (2022-07-22T17:41:24Z) - Editable Free-viewpoint Video Using a Layered Neural Representation [35.44420164057911]
We propose the first approach for editable free-viewpoint video generation for large-scale dynamic scenes using only sparse 16 cameras.
The core of our approach is a new layered neural representation, where each dynamic entity including the environment itself is formulated into a space-time coherent neural layered radiance representation called ST-NeRF.
Experiments demonstrate the effectiveness of our approach to achieve high-quality, photo-realistic, and editable free-viewpoint video generation for dynamic scenes.
arXiv Detail & Related papers (2021-04-30T06:50:45Z) - STaR: Self-supervised Tracking and Reconstruction of Rigid Objects in
Motion with Neural Rendering [9.600908665766465]
We present STaR, a novel method that performs Self-supervised Tracking and Reconstruction of dynamic scenes with rigid motion from multi-view RGB videos without any manual annotation.
We show that our method can render photorealistic novel views, where novelty is measured on both spatial and temporal axes.
arXiv Detail & Related papers (2020-12-22T23:45:28Z) - Non-Rigid Neural Radiance Fields: Reconstruction and Novel View
Synthesis of a Dynamic Scene From Monocular Video [76.19076002661157]
Non-Rigid Neural Radiance Fields (NR-NeRF) is a reconstruction and novel view synthesis approach for general non-rigid dynamic scenes.
We show that even a single consumer-grade camera is sufficient to synthesize sophisticated renderings of a dynamic scene from novel virtual camera views.
arXiv Detail & Related papers (2020-12-22T18:46:12Z) - Neural Radiance Flow for 4D View Synthesis and Video Processing [59.9116932930108]
We present a method to learn a 4D spatial-temporal representation of a dynamic scene from a set of RGB images.
Key to our approach is the use of a neural implicit representation that learns to capture the 3D occupancy, radiance, and dynamics of the scene.
arXiv Detail & Related papers (2020-12-17T17:54:32Z) - Object-Centric Neural Scene Rendering [19.687759175741824]
We present a method for composing photorealistic scenes from captured images of objects.
Our work builds upon neural radiance fields (NeRFs), which implicitly model the volumetric density and directionally-emitted radiance of a scene.
We learn object-centric neural scattering functions (OSFs), a representation that models per-object light transport implicitly using a lighting- and view-dependent neural network.
arXiv Detail & Related papers (2020-12-15T18:55:02Z) - pixelNeRF: Neural Radiance Fields from One or Few Images [20.607712035278315]
pixelNeRF is a learning framework that predicts a continuous neural scene representation conditioned on one or few input images.
We conduct experiments on ShapeNet benchmarks for single image novel view synthesis tasks with held-out objects.
In all cases, pixelNeRF outperforms current state-of-the-art baselines for novel view synthesis and single image 3D reconstruction.
arXiv Detail & Related papers (2020-12-03T18:59:54Z) - Neural Sparse Voxel Fields [151.20366604586403]
We introduce Neural Sparse Voxel Fields (NSVF), a new neural scene representation for fast and high-quality free-viewpoint rendering.
NSVF defines a set of voxel-bounded implicit fields organized in a sparse voxel octree to model local properties in each cell.
Our method is typically over 10 times faster than the state-of-the-art (namely, NeRF(Mildenhall et al., 2020)) at inference time while achieving higher quality results.
arXiv Detail & Related papers (2020-07-22T17:51:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.