Neural Radiance Flow for 4D View Synthesis and Video Processing
- URL: http://arxiv.org/abs/2012.09790v1
- Date: Thu, 17 Dec 2020 17:54:32 GMT
- Title: Neural Radiance Flow for 4D View Synthesis and Video Processing
- Authors: Yilun Du, Yinan Zhang, Hong-Xing Yu, Joshua B. Tenenbaum, Jiajun Wu
- Abstract summary: We present a method to learn a 4D spatial-temporal representation of a dynamic scene from a set of RGB images.
Key to our approach is the use of a neural implicit representation that learns to capture the 3D occupancy, radiance, and dynamics of the scene.
- Score: 59.9116932930108
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a method, Neural Radiance Flow (NeRFlow),to learn a 4D
spatial-temporal representation of a dynamic scene from a set of RGB images.
Key to our approach is the use of a neural implicit representation that learns
to capture the 3D occupancy, radiance, and dynamics of the scene. By enforcing
consistency across different modalities, our representation enables multi-view
rendering in diverse dynamic scenes, including water pouring, robotic
interaction, and real images, outperforming state-of-the-art methods for
spatial-temporal view synthesis. Our approach works even when inputs images are
captured with only one camera. We further demonstrate that the learned
representation can serve as an implicit scene prior, enabling video processing
tasks such as image super-resolution and de-noising without any additional
supervision.
Related papers
- NeRFPlayer: A Streamable Dynamic Scene Representation with Decomposed
Neural Radiance Fields [99.57774680640581]
We present an efficient framework capable of fast reconstruction, compact modeling, and streamable rendering.
We propose to decompose the 4D space according to temporal characteristics. Points in the 4D space are associated with probabilities belonging to three categories: static, deforming, and new areas.
arXiv Detail & Related papers (2022-10-28T07:11:05Z) - Neural Groundplans: Persistent Neural Scene Representations from a
Single Image [90.04272671464238]
We present a method to map 2D image observations of a scene to a persistent 3D scene representation.
We propose conditional neural groundplans as persistent and memory-efficient scene representations.
arXiv Detail & Related papers (2022-07-22T17:41:24Z) - Editable Free-viewpoint Video Using a Layered Neural Representation [35.44420164057911]
We propose the first approach for editable free-viewpoint video generation for large-scale dynamic scenes using only sparse 16 cameras.
The core of our approach is a new layered neural representation, where each dynamic entity including the environment itself is formulated into a space-time coherent neural layered radiance representation called ST-NeRF.
Experiments demonstrate the effectiveness of our approach to achieve high-quality, photo-realistic, and editable free-viewpoint video generation for dynamic scenes.
arXiv Detail & Related papers (2021-04-30T06:50:45Z) - STaR: Self-supervised Tracking and Reconstruction of Rigid Objects in
Motion with Neural Rendering [9.600908665766465]
We present STaR, a novel method that performs Self-supervised Tracking and Reconstruction of dynamic scenes with rigid motion from multi-view RGB videos without any manual annotation.
We show that our method can render photorealistic novel views, where novelty is measured on both spatial and temporal axes.
arXiv Detail & Related papers (2020-12-22T23:45:28Z) - D-NeRF: Neural Radiance Fields for Dynamic Scenes [72.75686949608624]
We introduce D-NeRF, a method that extends neural radiance fields to a dynamic domain.
D-NeRF reconstructs images of objects under rigid and non-rigid motions from a camera moving around the scene.
We demonstrate the effectiveness of our approach on scenes with objects under rigid, articulated and non-rigid motions.
arXiv Detail & Related papers (2020-11-27T19:06:50Z) - Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes [70.76742458931935]
We introduce a new representation that models the dynamic scene as a time-variant continuous function of appearance, geometry, and 3D scene motion.
Our representation is optimized through a neural network to fit the observed input views.
We show that our representation can be used for complex dynamic scenes, including thin structures, view-dependent effects, and natural degrees of motion.
arXiv Detail & Related papers (2020-11-26T01:23:44Z) - NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis [78.5281048849446]
We present a method that achieves state-of-the-art results for synthesizing novel views of complex scenes.
Our algorithm represents a scene using a fully-connected (non-convolutional) deep network.
Because volume rendering is naturally differentiable, the only input required to optimize our representation is a set of images with known camera poses.
arXiv Detail & Related papers (2020-03-19T17:57:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.