論文の概要: Active Learning in CNNs via Expected Improvement Maximization
- arxiv url: http://arxiv.org/abs/2011.14015v1
- Date: Fri, 27 Nov 2020 22:06:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-20 01:30:01.122076
- Title: Active Learning in CNNs via Expected Improvement Maximization
- Title(参考訳): 期待改善最大化によるcnnのアクティブラーニング
- Authors: Udai G. Nagpal, David A Knowles
- Abstract要約: また,Dropout-based IMprOvementS (DEIMOS) は,能動的学習に対する柔軟で計算効率のよいアプローチである。
以上の結果から,DIMOSは複数の回帰・分類タスクにおいて,既存のベースラインよりも優れていたことが示唆された。
- 参考スコア(独自算出の注目度): 2.0305676256390934
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning models such as Convolutional Neural Networks (CNNs) have
demonstrated high levels of effectiveness in a variety of domains, including
computer vision and more recently, computational biology. However, training
effective models often requires assembling and/or labeling large datasets,
which may be prohibitively time-consuming or costly. Pool-based active learning
techniques have the potential to mitigate these issues, leveraging models
trained on limited data to selectively query unlabeled data points from a pool
in an attempt to expedite the learning process. Here we present "Dropout-based
Expected IMprOvementS" (DEIMOS), a flexible and computationally-efficient
approach to active learning that queries points that are expected to maximize
the model's improvement across a representative sample of points. The proposed
framework enables us to maintain a prediction covariance matrix capturing model
uncertainty, and to dynamically update this matrix in order to generate diverse
batches of points in the batch-mode setting. Our active learning results
demonstrate that DEIMOS outperforms several existing baselines across multiple
regression and classification tasks taken from computer vision and genomics.
- Abstract(参考訳): convolutional neural networks(cnns)などのディープラーニングモデルは、コンピュータビジョンや最近では計算生物学など、さまざまな領域において高いレベルの有効性を示している。
しかし、効果的なモデルのトレーニングには、しばしば大規模なデータセットを組み立てたり、ラベル付けする必要がある。
プールベースのアクティブラーニング技術は、これらの問題を軽減し、限られたデータで訓練されたモデルを利用して、学習プロセスを高速化するために、未ラベルのデータポイントをプールから選択的にクエリする。
本稿では,提案する「Dropout-based expecteded IMprOvementS」(DEIMOS)について述べる。
提案フレームワークは,モデル不確実性を捉える予測共分散行列の維持と,この行列を動的に更新することにより,バッチモード設定における多様な点のバッチを生成する。
アクティブラーニングの結果,DIMOSはコンピュータビジョンやゲノミクスから取られた複数の回帰・分類タスクにおいて,既存のベースラインよりも優れていた。
関連論文リスト
- Transferable Post-training via Inverse Value Learning [83.75002867411263]
別個のニューラルネットワーク(すなわち値ネットワーク)を用いた後学習におけるロジットレベルのモデリング変更を提案する。
このネットワークをデモを使って小さなベースモデルでトレーニングした後、推論中に他のトレーニング済みモデルとシームレスに統合することができる。
得られた値ネットワークは、パラメータサイズの異なる事前学習されたモデル間で広い転送性を有することを示す。
論文 参考訳(メタデータ) (2024-10-28T13:48:43Z) - An exactly solvable model for emergence and scaling laws in the multitask sparse parity problem [2.598133279943607]
本稿では,新たな能力(スキル)を基礎関数として表現するフレームワークを提案する。
新たなスキルの出現と、トレーニング時間、データサイズ、モデルサイズ、最適計算による損失の法則のスケーリングに関する分析式を見つける。
私たちの単純なモデルでは、単一の適合パラメータを使用して、トレーニング時間、データサイズ、モデルサイズが増大するにつれて、複数の新しいスキルのシグモダルな出現を捉えます。
論文 参考訳(メタデータ) (2024-04-26T17:45:32Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWGは拡散に基づくニューラルネットワーク重み生成技術であり、転送学習のために高性能な重みを効率よく生成する。
本稿では,ニューラルネットワーク重み生成のための遅延拡散パラダイムを再放送するために,生成的ハイパー表現学習を拡張した。
我々のアプローチは大規模言語モデル(LLM)のような大規模アーキテクチャにスケーラブルであり、現在のパラメータ生成技術の限界を克服しています。
論文 参考訳(メタデータ) (2024-02-28T08:34:23Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
学び アクティブラーニング(LAL)は、アクティブラーニング戦略自体を学ぶことを提案し、与えられた設定に適応できるようにする。
能動学習問題の対称性と独立性を利用した新しい分類法を提案する。
私たちのアプローチは、筋電図から学ぶことに基づいており、モデルに標準ではない目的に適応する能力を与えます。
論文 参考訳(メタデータ) (2023-09-11T14:16:37Z) - Amortised Inference in Bayesian Neural Networks [0.0]
Amortized Pseudo-Observation Variational Inference Bayesian Neural Network (APOVI-BNN)を紹介する。
補正された推論は、従来の変分推論によって得られたものと類似または良好な品質であることが示される。
次に、APOVI-BNNをニューラルプロセスファミリーの新たなメンバーと見なす方法について論じる。
論文 参考訳(メタデータ) (2023-09-06T14:02:33Z) - Frugal Reinforcement-based Active Learning [12.18340575383456]
本稿では,ラベル効率向上のための新しい能動的学習手法を提案する。
提案手法は反復的であり,多様性,表現性,不確実性の基準を混合した制約対象関数の最小化を目的としている。
また、強化学習に基づく新たな重み付け機構を導入し、各トレーニングイテレーションでこれらの基準を適応的にバランスさせる。
論文 参考訳(メタデータ) (2022-12-09T14:17:45Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
この研究は、データ駆動メソッドが動的環境でリソース割り当て戦略を継続的に学び、最適化することを可能にする新しいアプローチを開発しています。
学習モデルが新たなエピソードに段階的に適応できるように、連続学習の概念を無線システム設計に組み込むことを提案する。
我々の設計は、異なるデータサンプルにまたがる公平性を保証する、新しい二段階最適化定式化に基づいている。
論文 参考訳(メタデータ) (2021-05-03T07:23:39Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
本稿では,予測の多様性を奨励することで,ニューラルネットワークの効果的なアンサンブルを生成する問題をターゲットにする。
そこで本研究では,潜伏変数の学習における逆損失の多様性を明示的に最適化し,マルチモーダルデータのモデリングに必要な出力予測の多様性を得る。
最も競争力のあるベースラインと比較して、データ分布の変化の下で、分類精度が大幅に向上した。
論文 参考訳(メタデータ) (2020-03-10T03:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。