論文の概要: Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data
- arxiv url: http://arxiv.org/abs/2011.14164v2
- Date: Tue, 26 Oct 2021 10:47:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-19 19:31:02.404965
- Title: Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data
- Title(参考訳): 小規模データを用いたロバスト部分教師付き多構造医用画像分割
- Authors: Nanqing Dong, Michael Kampffmeyer, Xiaodan Liang, Min Xu, Irina
Voiculescu, Eric P. Xing
- Abstract要約: データ不足下における部分教師付き学習(PSL)における方法論的ギャップを埋めるために,不確実性下でのビシナルラベル(VLUU)を提案する。
マルチタスク学習とヴィジナルリスク最小化によって動機づけられたVLUUは、ビジナルラベルを生成することによって、部分的に教師付き問題を完全な教師付き問題に変換する。
本研究は,ラベル効率の高い深層学習における新たな研究の方向性を示唆するものである。
- 参考スコア(独自算出の注目度): 123.03252888189546
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The data-driven nature of deep learning (DL) models for semantic segmentation
requires a large number of pixel-level annotations. However, large-scale and
fully labeled medical datasets are often unavailable for practical tasks.
Recently, partially supervised methods have been proposed to utilize images
with incomplete labels in the medical domain. To bridge the methodological gaps
in partially supervised learning (PSL) under data scarcity, we propose Vicinal
Labels Under Uncertainty (VLUU), a simple yet efficient framework utilizing the
human structure similarity for partially supervised medical image segmentation.
Motivated by multi-task learning and vicinal risk minimization, VLUU transforms
the partially supervised problem into a fully supervised problem by generating
vicinal labels. We systematically evaluate VLUU under the challenges of
small-scale data, dataset shift, and class imbalance on two commonly used
segmentation datasets for the tasks of chest organ segmentation and optic
disc-and-cup segmentation. The experimental results show that VLUU can
consistently outperform previous partially supervised models in these settings.
Our research suggests a new research direction in label-efficient deep learning
with partial supervision.
- Abstract(参考訳): セマンティックセグメンテーションのための深層学習(DL)モデルは、多くのピクセルレベルのアノテーションを必要とする。
しかしながら、大規模で完全なラベル付き医療データセットは、実用的なタスクでは使用できないことが多い。
近年,医療領域に不完全なラベルを持つ画像を利用するための部分教師付き手法が提案されている。
データ不足下での部分教師付き学習(PSL)の方法論的ギャップを埋めるため、部分教師付き医用画像セグメンテーションのための人体構造類似性を利用した簡易かつ効率的な枠組みであるVLUUを提案する。
マルチタスク学習とビクタナルリスクの最小化に動機付けられ、vluuは部分教師あり問題をビクタナルラベルを生成して完全な教師付き問題に変換する。
胸部臓器分割と視神経椎間板・カップ分割の課題に対して, 小規模データ, データセットシフト, クラス不均衡などの課題からvluuを体系的に評価した。
実験結果から,VLUUは従来の部分教師付きモデルよりも一貫して優れていた。
本研究は,ラベル効率の高い深層学習における新たな研究の方向性を示唆するものである。
関連論文リスト
- Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
医用画像セグメンテーションのための階層化グループ理論を用いた半教師付きコントラスト学習フレームワークARCOを提案する。
まず、分散還元推定の概念を用いてARCOを構築することを提案し、特定の分散還元技術が画素/ボクセルレベルのセグメンテーションタスクにおいて特に有用であることを示す。
5つの2D/3D医療データセットと3つのセマンティックセグメンテーションデータセットのラベル設定が異なる8つのベンチマークで、我々のアプローチを実験的に検証する。
論文 参考訳(メタデータ) (2023-02-03T13:50:25Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
医用画像セグメンテーションのためのPatch Confidence Adrial Training (PCA) と呼ばれる半教師付き対向法を提案する。
PCAは各パッチの画素構造とコンテキスト情報を学習し、十分な勾配フィードバックを得る。
本手法は, 医用画像のセグメンテーションにおいて, 最先端の半教師付き手法より優れており, その有効性を示している。
論文 参考訳(メタデータ) (2022-07-24T07:45:47Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
我々は、デコードフェーズに2つの並列分岐を持つMixed-UNetという新しいモデルを開発する。
地域病院や公開データセットから収集したデータセットに対して,いくつかの一般的なディープラーニングに基づくセグメンテーションアプローチに対して,設計したMixed-UNetを評価した。
論文 参考訳(メタデータ) (2022-05-06T08:37:02Z) - Revisiting Vicinal Risk Minimization for Partially Supervised
Multi-Label Classification Under Data Scarcity [8.25467163068214]
興味のあるすべてのクラスに完全にラベル付けされた大規模な医療データセットをキュレートするのは簡単ではない。
代わりに、異なるマッチングソースから複数の小さなラベル付きデータセットを集めるのが便利だろう。
本稿では,未探索問題,すなわち部分的に教師付きマルチラベル分類に関する経験的理解を提供する。
論文 参考訳(メタデータ) (2022-04-19T15:50:16Z) - CvS: Classification via Segmentation For Small Datasets [52.821178654631254]
本稿では,分類ラベルをセグメントマップの予測から導出する小型データセットのコスト効率の高い分類器であるCvSを提案する。
我々は,CvSが従来の手法よりもはるかに高い分類結果が得られることを示す多種多様な問題に対して,本フレームワークの有効性を評価する。
論文 参考訳(メタデータ) (2021-10-29T18:41:15Z) - Learning from Partially Overlapping Labels: Image Segmentation under
Annotation Shift [68.6874404805223]
腹部臓器分節の文脈におけるラベルの重複から学ぶためのいくつかの方法を提案する。
半教師付きアプローチと適応的クロスエントロピー損失を組み合わせることで、不均一な注釈付きデータをうまく活用できることが判明した。
論文 参考訳(メタデータ) (2021-07-13T09:22:24Z) - A Teacher-Student Framework for Semi-supervised Medical Image
Segmentation From Mixed Supervision [62.4773770041279]
そこで我々は,臓器と病変のセグメンテーションのための教師と学生のスタイルに基づくセミ教師付き学習フレームワークを開発した。
我々は,本モデルがバウンディングボックスの品質に対して堅牢であることを示し,フル教師付き学習手法と比較した性能を実現する。
論文 参考訳(メタデータ) (2020-10-23T07:58:20Z) - Uncertainty-aware multi-view co-training for semi-supervised medical
image segmentation and domain adaptation [35.33425093398756]
ラベルのないデータは、注釈付きデータよりもはるかに簡単に取得できる。
医用画像セグメンテーションのための不確実性を考慮したマルチビュー協調トレーニングを提案する。
我々のフレームワークは、ラベルのないデータを効率的に活用してパフォーマンスを向上させることができる。
論文 参考訳(メタデータ) (2020-06-28T22:04:54Z) - Semi-supervised few-shot learning for medical image segmentation [21.349705243254423]
大規模な注釈付きデータセットの必要性を緩和する最近の試みは、数ショットの学習パラダイムの下でトレーニング戦略を開発した。
セマンティックセグメンテーションのための新しい数発の学習フレームワークを提案し,各エピソードでラベルのない画像も利用できるようにした。
エピソードトレーニングにおけるラベルなしのサロゲートタスクを含めると、より強力な特徴表現がもたらされることを示す。
論文 参考訳(メタデータ) (2020-03-18T20:37:18Z) - Weak Supervision in Convolutional Neural Network for Semantic
Segmentation of Diffuse Lung Diseases Using Partially Annotated Dataset [2.239917051803692]
5種類の肺疾患に対するセマンティックセグメンテーションモデルを構築した。
この研究で考慮されたDLDは、凝縮、ガラス不透明度、ハニカム、気腫、正常である。
部分的に注釈付けされたデータセットを効果的に活用する新しい弱い監視手法を提案する。
論文 参考訳(メタデータ) (2020-02-27T06:17:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。