Thermodynamic Consistent Neural Networks for Learning Material
Interfacial Mechanics
- URL: http://arxiv.org/abs/2011.14172v1
- Date: Sat, 28 Nov 2020 17:25:10 GMT
- Title: Thermodynamic Consistent Neural Networks for Learning Material
Interfacial Mechanics
- Authors: Jiaxin Zhang, Congjie Wei, Chenglin Wu
- Abstract summary: The traction-separation relations (TSR) quantitatively describe the mechanical behavior of a material interface undergoing openings.
A neural network can fit well along with the loading paths but often fails to obey the laws of physics.
We propose a thermodynamic consistent neural network (TCNN) approach to build a data-driven model of the TSR with sparse experimental data.
- Score: 6.087530833458481
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For multilayer materials in thin substrate systems, interfacial failure is
one of the most challenges. The traction-separation relations (TSR)
quantitatively describe the mechanical behavior of a material interface
undergoing openings, which is critical to understand and predict interfacial
failures under complex loadings. However, existing theoretical models have
limitations on enough complexity and flexibility to well learn the real-world
TSR from experimental observations. A neural network can fit well along with
the loading paths but often fails to obey the laws of physics, due to a lack of
experimental data and understanding of the hidden physical mechanism. In this
paper, we propose a thermodynamic consistent neural network (TCNN) approach to
build a data-driven model of the TSR with sparse experimental data. The TCNN
leverages recent advances in physics-informed neural networks (PINN) that
encode prior physical information into the loss function and efficiently train
the neural networks using automatic differentiation. We investigate three
thermodynamic consistent principles, i.e., positive energy dissipation,
steepest energy dissipation gradient, and energy conservative loading path. All
of them are mathematically formulated and embedded into a neural network model
with a novel defined loss function. A real-world experiment demonstrates the
superior performance of TCNN, and we find that TCNN provides an accurate
prediction of the whole TSR surface and significantly reduces the violated
prediction against the laws of physics.
Related papers
- Knowledge-Based Convolutional Neural Network for the Simulation and Prediction of Two-Phase Darcy Flows [3.5707423185282656]
Physics-informed neural networks (PINNs) have gained significant prominence as a powerful tool in the field of scientific computing and simulations.
We propose to combine the power of neural networks with the dynamics imposed by the discretized differential equations.
By discretizing the governing equations, the PINN learns to account for the discontinuities and accurately capture the underlying relationships between inputs and outputs.
arXiv Detail & Related papers (2024-04-04T06:56:32Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - Physics-Informed Neural Networks with Hard Linear Equality Constraints [9.101849365688905]
This work proposes a novel physics-informed neural network, KKT-hPINN, which rigorously guarantees hard linear equality constraints.
Experiments on Aspen models of a stirred-tank reactor unit, an extractive distillation subsystem, and a chemical plant demonstrate that this model can further enhance the prediction accuracy.
arXiv Detail & Related papers (2024-02-11T17:40:26Z) - Physics-Informed Deep Learning of Rate-and-State Fault Friction [0.0]
We develop a multi-network PINN for both the forward problem and for direct inversion of nonlinear fault friction parameters.
We present the computational PINN framework for strike-slip faults in 1D and 2D subject to rate-and-state friction.
We find that the network for the parameter inversion at the fault performs much better than the network for material displacements to which it is coupled.
arXiv Detail & Related papers (2023-12-14T23:53:25Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
Recently, physics informed neural networks have successfully been applied to a broad variety of problems in applied mathematics and engineering.
Due to the global approximation, physics informed neural networks have difficulties in displaying localized effects and strong non-linear solutions by optimization.
It is shown, that the domain decomposition approach is able to accurately resolve nonlinear stress, displacement and energy fields in heterogeneous microstructures obtained from real-world $mu$CT-scans.
arXiv Detail & Related papers (2021-10-14T14:05:19Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
Spiking neural networks (SNNs) are brain-inspired models that enable energy-efficient implementation on neuromorphic hardware.
Most existing methods imitate the backpropagation framework and feedforward architectures for artificial neural networks.
We propose a novel training method that does not rely on the exact reverse of the forward computation.
arXiv Detail & Related papers (2021-09-29T07:46:54Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models.
We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs.
We show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize.
arXiv Detail & Related papers (2021-09-02T16:06:45Z) - Explainable artificial intelligence for mechanics: physics-informing
neural networks for constitutive models [0.0]
In mechanics, the new and active field of physics-informed neural networks attempts to mitigate this disadvantage by designing deep neural networks on the basis of mechanical knowledge.
We propose a first step towards a physics-forming-in approach, which explains neural networks trained on mechanical data a posteriori.
Therein, the principal component analysis decorrelates the distributed representations in cell states of RNNs and allows the comparison to known and fundamental functions.
arXiv Detail & Related papers (2021-04-20T18:38:52Z) - Thermodynamics-based Artificial Neural Networks for constitutive
modeling [0.0]
We propose a new class of data-driven, physics-based, neural networks for modeling of strain rate independent processes at the material point level.
The two basic principles of thermodynamics are encoded in the network's architecture by taking advantage of automatic differentiation.
We demonstrate the wide applicability of TANNs for modeling elasto-plastic materials, with strain hardening and softening strain.
arXiv Detail & Related papers (2020-05-25T15:56:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.