Mechanistic Neural Networks for Scientific Machine Learning
- URL: http://arxiv.org/abs/2402.13077v1
- Date: Tue, 20 Feb 2024 15:23:24 GMT
- Title: Mechanistic Neural Networks for Scientific Machine Learning
- Authors: Adeel Pervez, Francesco Locatello, Efstratios Gavves
- Abstract summary: We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
- Score: 58.99592521721158
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents Mechanistic Neural Networks, a neural network design for
machine learning applications in the sciences. It incorporates a new
Mechanistic Block in standard architectures to explicitly learn governing
differential equations as representations, revealing the underlying dynamics of
data and enhancing interpretability and efficiency in data modeling. Central to
our approach is a novel Relaxed Linear Programming Solver (NeuRLP) inspired by
a technique that reduces solving linear ODEs to solving linear programs. This
integrates well with neural networks and surpasses the limitations of
traditional ODE solvers enabling scalable GPU parallel processing. Overall,
Mechanistic Neural Networks demonstrate their versatility for scientific
machine learning applications, adeptly managing tasks from equation discovery
to dynamic systems modeling. We prove their comprehensive capabilities in
analyzing and interpreting complex scientific data across various applications,
showing significant performance against specialized state-of-the-art methods.
Related papers
- Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
This paper introduces the SANE approach to weight-space learning.
Our method extends the idea of hyper-representations towards sequential processing of subsets of neural network weights.
arXiv Detail & Related papers (2024-06-14T13:12:07Z) - Interpretable learning of effective dynamics for multiscale systems [5.754251195342313]
We propose a novel framework of Interpretable Learning Effective Dynamics (iLED)
iLED offers comparable accuracy to state-of-theart recurrent neural network-based approaches.
Our results show that the iLED framework can generate accurate predictions and obtain interpretable dynamics.
arXiv Detail & Related papers (2023-09-11T20:29:38Z) - Stretched and measured neural predictions of complex network dynamics [2.1024950052120417]
Data-driven approximations of differential equations present a promising alternative to traditional methods for uncovering a model of dynamical systems.
A recently employed machine learning tool for studying dynamics is neural networks, which can be used for data-driven solution finding or discovery of differential equations.
We show that extending the model's generalizability beyond traditional statistical learning theory limits is feasible.
arXiv Detail & Related papers (2023-01-12T09:44:59Z) - Gaussian Process Surrogate Models for Neural Networks [6.8304779077042515]
In science and engineering, modeling is a methodology used to understand complex systems whose internal processes are opaque.
We construct a class of surrogate models for neural networks using Gaussian processes.
We demonstrate our approach captures existing phenomena related to the spectral bias of neural networks, and then show that our surrogate models can be used to solve practical problems.
arXiv Detail & Related papers (2022-08-11T20:17:02Z) - Unsupervised Legendre-Galerkin Neural Network for Stiff Partial
Differential Equations [9.659504024299896]
We propose an unsupervised machine learning algorithm based on the Legendre-Galerkin neural network to find an accurate approximation to the solution of different types of PDEs.
The proposed neural network is applied to the general 1D and 2D PDEs as well as singularly perturbed PDEs that possess boundary layer behavior.
arXiv Detail & Related papers (2022-07-21T00:47:47Z) - Neural Galerkin Schemes with Active Learning for High-Dimensional
Evolution Equations [44.89798007370551]
This work proposes Neural Galerkin schemes based on deep learning that generate training data with active learning for numerically solving high-dimensional partial differential equations.
Neural Galerkin schemes build on the Dirac-Frenkel variational principle to train networks by minimizing the residual sequentially over time.
Our finding is that the active form of gathering training data of the proposed Neural Galerkin schemes is key for numerically realizing the expressive power of networks in high dimensions.
arXiv Detail & Related papers (2022-03-02T19:09:52Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
Spiking Neural Networks are cognitive algorithms mimicking neuron and synapse operational principles.
We present the state of the art of hardware implementations of spiking neural networks.
We discuss the strategies employed to leverage the characteristics of these event-driven algorithms at the hardware level.
arXiv Detail & Related papers (2020-05-04T13:24:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.