Lattice Fusion Networks for Image Denoising
- URL: http://arxiv.org/abs/2011.14196v3
- Date: Thu, 1 Jul 2021 17:27:18 GMT
- Title: Lattice Fusion Networks for Image Denoising
- Authors: Seyed Mohsen Hosseini
- Abstract summary: A novel method for feature fusion in convolutional neural networks is proposed in this paper.
Some of these techniques as well as the proposed network can be considered a type of Directed Acyclic Graph (DAG) Network.
The proposed network is able to achieve better results with far fewer learnable parameters.
- Score: 4.010371060637209
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A novel method for feature fusion in convolutional neural networks is
proposed in this paper. Different feature fusion techniques are suggested to
facilitate the flow of information and improve the training of deep neural
networks. Some of these techniques as well as the proposed network can be
considered a type of Directed Acyclic Graph (DAG) Network, where a layer can
receive inputs from other layers and have outputs to other layers. In the
proposed general framework of Lattice Fusion Network (LFNet), feature maps of
each convolutional layer are passed to other layers based on a lattice graph
structure, where nodes are convolutional layers. To evaluate the performance of
the proposed architecture, different designs based on the general framework of
LFNet are implemented for the task of image denoising. This task is used as an
example where training deep convolutional networks is needed. Results are
compared with state of the art methods. The proposed network is able to achieve
better results with far fewer learnable parameters, which shows the
effectiveness of LFNets for training of deep neural networks.
Related papers
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Adaptive Convolutional Neural Network for Image Super-resolution [43.06377001247278]
We propose a adaptive convolutional neural network for image super-resolution (ADSRNet)
The upper network can enhance relation of context information, salient information relation of a kernel mapping and relations of shallow and deep layers.
The lower network utilizes a symmetric architecture to enhance relations of different layers to mine more structural information.
arXiv Detail & Related papers (2024-02-24T03:44:06Z) - Graph Metanetworks for Processing Diverse Neural Architectures [33.686728709734105]
Graph Metanetworks (GMNs) generalizes to neural architectures where competing methods struggle.
We prove that GMNs are expressive and equivariant to parameter permutation symmetries that leave the input neural network functions.
arXiv Detail & Related papers (2023-12-07T18:21:52Z) - Layer Collaboration in the Forward-Forward Algorithm [28.856139738073626]
We study layer collaboration in the forward-forward algorithm.
We show that the current version of the forward-forward algorithm is suboptimal when considering information flow in the network.
We propose an improved version that supports layer collaboration to better utilize the network structure.
arXiv Detail & Related papers (2023-05-21T08:12:54Z) - Local Critic Training for Model-Parallel Learning of Deep Neural
Networks [94.69202357137452]
We propose a novel model-parallel learning method, called local critic training.
We show that the proposed approach successfully decouples the update process of the layer groups for both convolutional neural networks (CNNs) and recurrent neural networks (RNNs)
We also show that trained networks by the proposed method can be used for structural optimization.
arXiv Detail & Related papers (2021-02-03T09:30:45Z) - Dynamic Graph: Learning Instance-aware Connectivity for Neural Networks [78.65792427542672]
Dynamic Graph Network (DG-Net) is a complete directed acyclic graph, where the nodes represent convolutional blocks and the edges represent connection paths.
Instead of using the same path of the network, DG-Net aggregates features dynamically in each node, which allows the network to have more representation ability.
arXiv Detail & Related papers (2020-10-02T16:50:26Z) - Network Adjustment: Channel Search Guided by FLOPs Utilization Ratio [101.84651388520584]
This paper presents a new framework named network adjustment, which considers network accuracy as a function of FLOPs.
Experiments on standard image classification datasets and a wide range of base networks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-06T15:51:00Z) - Backprojection for Training Feedforward Neural Networks in the Input and
Feature Spaces [12.323996999894002]
We propose a new algorithm for training feedforward neural networks which is fairly faster than backpropagation.
The proposed algorithm can be used for both input and feature spaces, named as backprojection and kernel backprojection, respectively.
arXiv Detail & Related papers (2020-04-05T20:53:11Z) - Progressive Graph Convolutional Networks for Semi-Supervised Node
Classification [97.14064057840089]
Graph convolutional networks have been successful in addressing graph-based tasks such as semi-supervised node classification.
We propose a method to automatically build compact and task-specific graph convolutional networks.
arXiv Detail & Related papers (2020-03-27T08:32:16Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
Deep neural networks achieve state-of-the-art performance for a range of classification and inference tasks.
The use of gradient combined nonvolutionity renders learning susceptible to novel problems.
We propose fusing neighboring layers of deeper networks that are trained with random variables.
arXiv Detail & Related papers (2020-01-28T18:25:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.