Adaptive Convolutional Neural Network for Image Super-resolution
- URL: http://arxiv.org/abs/2402.15704v4
- Date: Wed, 16 Oct 2024 13:41:53 GMT
- Title: Adaptive Convolutional Neural Network for Image Super-resolution
- Authors: Chunwei Tian, Xuanyu Zhang, Tao Wang, Yongjun Zhang, Qi Zhu, Chia-Wen Lin,
- Abstract summary: We propose a adaptive convolutional neural network for image super-resolution (ADSRNet)
The upper network can enhance relation of context information, salient information relation of a kernel mapping and relations of shallow and deep layers.
The lower network utilizes a symmetric architecture to enhance relations of different layers to mine more structural information.
- Score: 43.06377001247278
- License:
- Abstract: Convolutional neural networks can automatically learn features via deep network architectures and given input samples. However, the robustness of obtained models may face challenges in varying scenes. Bigger differences in network architecture are beneficial to extract more diversified structural information to strengthen the robustness of an obtained super-resolution model. In this paper, we proposed a adaptive convolutional neural network for image super-resolution (ADSRNet). To capture more information, ADSRNet is implemented by a heterogeneous parallel network. The upper network can enhance relation of context information, salient information relation of a kernel mapping and relations of shallow and deep layers to improve performance of image super-resolution. That can strengthen adaptability of an obtained super-resolution model for different scenes. The lower network utilizes a symmetric architecture to enhance relations of different layers to mine more structural information, which is complementary with a upper network for image super-resolution. The relevant experimental results show that the proposed ADSRNet is effective to deal with image resolving. Codes are obtained at https://github.com/hellloxiaotian/ADSRNet.
Related papers
- Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Image Super-resolution with An Enhanced Group Convolutional Neural
Network [102.2483249598621]
CNNs with strong learning abilities are widely chosen to resolve super-resolution problem.
We present an enhanced super-resolution group CNN (ESRGCNN) with a shallow architecture.
Experiments report that our ESRGCNN surpasses the state-of-the-arts in terms of SISR performance, complexity, execution speed, image quality evaluation and visual effect in SISR.
arXiv Detail & Related papers (2022-05-29T00:34:25Z) - Deep Networks for Image and Video Super-Resolution [30.75380029218373]
Single image super-resolution (SISR) is built using efficient convolutional units we refer to as mixed-dense connection blocks (MDCB)
We train two versions of our network to enhance complementary image qualities using different loss configurations.
We further employ our network for super-resolution task, where our network learns to aggregate information from multiple frames and maintain-temporal consistency.
arXiv Detail & Related papers (2022-01-28T09:15:21Z) - Spatial Dependency Networks: Neural Layers for Improved Generative Image
Modeling [79.15521784128102]
We introduce a novel neural network for building image generators (decoders) and apply it to variational autoencoders (VAEs)
In our spatial dependency networks (SDNs), feature maps at each level of a deep neural net are computed in a spatially coherent way.
We show that augmenting the decoder of a hierarchical VAE by spatial dependency layers considerably improves density estimation.
arXiv Detail & Related papers (2021-03-16T07:01:08Z) - Lattice Fusion Networks for Image Denoising [4.010371060637209]
A novel method for feature fusion in convolutional neural networks is proposed in this paper.
Some of these techniques as well as the proposed network can be considered a type of Directed Acyclic Graph (DAG) Network.
The proposed network is able to achieve better results with far fewer learnable parameters.
arXiv Detail & Related papers (2020-11-28T18:57:54Z) - WDN: A Wide and Deep Network to Divide-and-Conquer Image
Super-resolution [0.0]
Divide and conquer is an established algorithm design paradigm that has proven itself to solve a variety of problems efficiently.
We propose an approach to divide the problem of image super-resolution into multiple sub-problems and then solve/conquer them with the help of a neural network.
arXiv Detail & Related papers (2020-10-07T06:15:11Z) - Dynamic Graph: Learning Instance-aware Connectivity for Neural Networks [78.65792427542672]
Dynamic Graph Network (DG-Net) is a complete directed acyclic graph, where the nodes represent convolutional blocks and the edges represent connection paths.
Instead of using the same path of the network, DG-Net aggregates features dynamically in each node, which allows the network to have more representation ability.
arXiv Detail & Related papers (2020-10-02T16:50:26Z) - Deep Adaptive Inference Networks for Single Image Super-Resolution [72.7304455761067]
Single image super-resolution (SISR) has witnessed tremendous progress in recent years owing to the deployment of deep convolutional neural networks (CNNs)
In this paper, we take a step forward to address this issue by leveraging the adaptive inference networks for deep SISR (AdaDSR)
Our AdaDSR involves an SISR model as backbone and a lightweight adapter module which takes image features and resource constraint as input and predicts a map of local network depth.
arXiv Detail & Related papers (2020-04-08T10:08:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.