Approximate Cross-validated Mean Estimates for Bayesian Hierarchical Regression Models
- URL: http://arxiv.org/abs/2011.14238v4
- Date: Fri, 27 Sep 2024 18:37:53 GMT
- Title: Approximate Cross-validated Mean Estimates for Bayesian Hierarchical Regression Models
- Authors: Amy X. Zhang, Le Bao, Changcheng Li, Michael J. Daniels,
- Abstract summary: We introduce a novel procedure for obtaining cross-validated predictive estimates for Bayesian hierarchical regression models.
We provide theoretical results and demonstrate its efficacy on publicly available data and in simulations.
- Score: 6.824747267214373
- License:
- Abstract: We introduce a novel procedure for obtaining cross-validated predictive estimates for Bayesian hierarchical regression models (BHRMs). Bayesian hierarchical models are popular for their ability to model complex dependence structures and provide probabilistic uncertainty estimates, but can be computationally expensive to run. Cross-validation (CV) is therefore not a common practice to evaluate the predictive performance of BHRMs. Our method circumvents the need to re-run computationally costly estimation methods for each cross-validation fold and makes CV more feasible for large BHRMs. By conditioning on the variance-covariance parameters, we shift the CV problem from probability-based sampling to a simple and familiar optimization problem. In many cases, this produces estimates which are equivalent to full CV. We provide theoretical results and demonstrate its efficacy on publicly available data and in simulations.
Related papers
- Predictive Performance Test based on the Exhaustive Nested Cross-Validation for High-dimensional data [7.62566998854384]
Cross-validation is used for several tasks such as estimating the prediction error, tuning the regularization parameter, and selecting the most suitable predictive model.
The K-fold cross-validation is a popular CV method but its limitation is that the risk estimates are highly dependent on the partitioning of the data.
This study presents an alternative novel predictive performance test and valid confidence intervals based on exhaustive nested cross-validation.
arXiv Detail & Related papers (2024-08-06T12:28:16Z) - Bootstrapping the Cross-Validation Estimate [3.5159221757909656]
Cross-validation is a widely used technique for evaluating the performance of prediction models.
It is essential to accurately quantify the uncertainty associated with the estimate.
This paper proposes a fast bootstrap method that quickly estimates the standard error of the cross-validation estimate.
arXiv Detail & Related papers (2023-07-01T07:50:54Z) - Robust leave-one-out cross-validation for high-dimensional Bayesian
models [0.0]
Leave-one-out cross-validation (LOO-CV) is a popular method for estimating out-of-sample predictive accuracy.
Here we propose and analyze a novel mixture estimator to compute LOO-CV criteria.
Our method retains the simplicity and computational convenience of classical approaches, while guaranteeing finite variance of the resulting estimators.
arXiv Detail & Related papers (2022-09-19T17:14:52Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - Learning to Estimate Without Bias [57.82628598276623]
Gauss theorem states that the weighted least squares estimator is a linear minimum variance unbiased estimation (MVUE) in linear models.
In this paper, we take a first step towards extending this result to non linear settings via deep learning with bias constraints.
A second motivation to BCE is in applications where multiple estimates of the same unknown are averaged for improved performance.
arXiv Detail & Related papers (2021-10-24T10:23:51Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
Marginal-likelihood based model-selection is rarely used in deep learning due to estimation difficulties.
Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable.
arXiv Detail & Related papers (2021-04-11T09:50:24Z) - Evaluating probabilistic classifiers: Reliability diagrams and score
decompositions revisited [68.8204255655161]
We introduce the CORP approach, which generates provably statistically Consistent, Optimally binned, and Reproducible reliability diagrams in an automated way.
Corpor is based on non-parametric isotonic regression and implemented via the Pool-adjacent-violators (PAV) algorithm.
arXiv Detail & Related papers (2020-08-07T08:22:26Z) - Fast Bayesian Estimation of Spatial Count Data Models [0.0]
We introduce Variational Bayes (VB) as an optimisation problem instead of a simulation problem.
A VB method is derived for posterior inference in negative binomial models with unobserved parameter and spatial dependence.
The VB approach is around 45 to 50 times faster than MCMC on a regular eight-core processor in a simulation and an empirical study.
arXiv Detail & Related papers (2020-07-07T10:24:45Z) - Estimating the Prediction Performance of Spatial Models via Spatial
k-Fold Cross Validation [1.7205106391379026]
In machine learning one often assumes the data are independent when evaluating model performance.
spatial autocorrelation (SAC) causes the standard cross validation (CV) methods to produce optimistically biased prediction performance estimates.
We propose a modified version of the CV method called spatial k-fold cross validation (SKCV) which provides a useful estimate for model prediction performance without optimistic bias due to SAC.
arXiv Detail & Related papers (2020-05-28T19:55:18Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
We propose a generic and efficient segmentation framework to construct ensemble segmentation models.
In the proposed method, ensemble models can be efficiently generated by using the layer selection method.
We also devise a new pixel-wise uncertainty loss, which improves the predictive performance.
arXiv Detail & Related papers (2020-05-21T16:08:38Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
Doubly-robust cross-fit estimators have been proposed to yield better statistical properties.
We conducted a simulation study to assess the performance of several estimators for the average causal effect (ACE)
When used with machine learning, the doubly-robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, variance, and confidence interval coverage.
arXiv Detail & Related papers (2020-04-21T23:09:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.