Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation
- URL: http://arxiv.org/abs/2005.10754v2
- Date: Fri, 22 May 2020 09:21:27 GMT
- Title: Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation
- Authors: Hong Joo Lee, Seong Tae Kim, Hakmin Lee, Nassir Navab, Yong Man Ro
- Abstract summary: We propose a generic and efficient segmentation framework to construct ensemble segmentation models.
In the proposed method, ensemble models can be efficiently generated by using the layer selection method.
We also devise a new pixel-wise uncertainty loss, which improves the predictive performance.
- Score: 74.06904875527556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies have shown that ensemble approaches could not only improve
accuracy and but also estimate model uncertainty in deep learning. However, it
requires a large number of parameters according to the increase of ensemble
models for better prediction and uncertainty estimation. To address this issue,
a generic and efficient segmentation framework to construct ensemble
segmentation models is devised in this paper. In the proposed method, ensemble
models can be efficiently generated by using the stochastic layer selection
method. The ensemble models are trained to estimate uncertainty through
Bayesian approximation. Moreover, to overcome its limitation from uncertain
instances, we devise a new pixel-wise uncertainty loss, which improves the
predictive performance. To evaluate our method, comprehensive and comparative
experiments have been conducted on two datasets. Experimental results show that
the proposed method could provide useful uncertainty information by Bayesian
approximation with the efficient ensemble model generation and improve the
predictive performance.
Related papers
- Ranking and Combining Latent Structured Predictive Scores without Labeled Data [2.5064967708371553]
This paper introduces a novel structured unsupervised ensemble learning model (SUEL)
It exploits the dependency between a set of predictors with continuous predictive scores, rank the predictors without labeled data and combine them to an ensembled score with weights.
The efficacy of the proposed methods is rigorously assessed through both simulation studies and real-world application of risk genes discovery.
arXiv Detail & Related papers (2024-08-14T20:14:42Z) - Towards Better Certified Segmentation via Diffusion Models [62.21617614504225]
segmentation models can be vulnerable to adversarial perturbations, which hinders their use in critical-decision systems like healthcare or autonomous driving.
Recently, randomized smoothing has been proposed to certify segmentation predictions by adding Gaussian noise to the input to obtain theoretical guarantees.
In this paper, we address the problem of certifying segmentation prediction using a combination of randomized smoothing and diffusion models.
arXiv Detail & Related papers (2023-06-16T16:30:39Z) - Better Batch for Deep Probabilistic Time Series Forecasting [15.31488551912888]
We propose an innovative training method that incorporates error autocorrelation to enhance probabilistic forecasting accuracy.
Our method constructs a mini-batch as a collection of $D$ consecutive time series segments for model training.
It explicitly learns a time-varying covariance matrix over each mini-batch, encoding error correlation among adjacent time steps.
arXiv Detail & Related papers (2023-05-26T15:36:59Z) - Functional Ensemble Distillation [18.34081591772928]
We investigate how to best distill an ensemble's predictions using an efficient model.
We find that learning the distilled model via a simple augmentation scheme in the form of mixup augmentation significantly boosts the performance.
arXiv Detail & Related papers (2022-06-05T14:07:17Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
We propose a novel perspective of graph contrastive learning methods showing random augmentations leads to encoders.
Our proposed method represents each node by a distribution in the latent space in contrast to existing techniques which embed each node to a deterministic vector.
We show a considerable improvement in performance compared to existing state-of-the-art methods on several benchmark datasets.
arXiv Detail & Related papers (2021-12-15T01:45:32Z) - Uncertainty-Aware Few-Shot Image Classification [118.72423376789062]
Few-shot image classification learns to recognize new categories from limited labelled data.
We propose Uncertainty-Aware Few-Shot framework for image classification.
arXiv Detail & Related papers (2020-10-09T12:26:27Z) - Robust, Accurate Stochastic Optimization for Variational Inference [68.83746081733464]
We show that common optimization methods lead to poor variational approximations if the problem is moderately large.
Motivated by these findings, we develop a more robust and accurate optimization framework by viewing the underlying algorithm as producing a Markov chain.
arXiv Detail & Related papers (2020-09-01T19:12:11Z) - Slice Sampling for General Completely Random Measures [74.24975039689893]
We present a novel Markov chain Monte Carlo algorithm for posterior inference that adaptively sets the truncation level using auxiliary slice variables.
The efficacy of the proposed algorithm is evaluated on several popular nonparametric models.
arXiv Detail & Related papers (2020-06-24T17:53:53Z) - Amortized Bayesian model comparison with evidential deep learning [0.12314765641075436]
We propose a novel method for performing Bayesian model comparison using specialized deep learning architectures.
Our method is purely simulation-based and circumvents the step of explicitly fitting all alternative models under consideration to each observed dataset.
We show that our method achieves excellent results in terms of accuracy, calibration, and efficiency across the examples considered in this work.
arXiv Detail & Related papers (2020-04-22T15:15:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.