論文の概要: ProtoPShare: Prototype Sharing for Interpretable Image Classification
and Similarity Discovery
- arxiv url: http://arxiv.org/abs/2011.14340v1
- Date: Sun, 29 Nov 2020 11:23:05 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-07 12:02:22.545107
- Title: ProtoPShare: Prototype Sharing for Interpretable Image Classification
and Similarity Discovery
- Title(参考訳): ProtoPShare: 解釈可能な画像分類と類似性発見のためのプロトタイプ共有
- Authors: Dawid Rymarczyk, {\L}ukasz Struski, Jacek Tabor, Bartosz Zieli\'nski
- Abstract要約: 本稿では,プロトタイプ部品のパラダイムを取り入れた自己説明手法であるProtoPShareを紹介する。
ProtoPShareの主な特徴は、データ依存のマージプルーニングのおかげで、クラス間でプロトタイプ部品を効率的に共有できることである。
CUB-200-2011とStanford Carsの2つのデータセットでこの結果を検証する。
- 参考スコア(独自算出の注目度): 9.36640530008137
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we introduce ProtoPShare, a self-explained method that
incorporates the paradigm of prototypical parts to explain its predictions. The
main novelty of the ProtoPShare is its ability to efficiently share
prototypical parts between the classes thanks to our data-dependent
merge-pruning. Moreover, the prototypes are more consistent and the model is
more robust to image perturbations than the state of the art method ProtoPNet.
We verify our findings on two datasets, the CUB-200-2011 and the Stanford Cars.
- Abstract(参考訳): 本稿では,その予測を説明するために,原型的部分のパラダイムを取り入れた自己説明型手法 protopshare を提案する。
ProtoPShareの主な特徴は、データ依存のマージプルーニングのおかげで、クラス間でプロトタイプ部品を効率的に共有できることである。
さらに、プロトタイプはより一貫性があり、モデルはartメソッドのprotopnetの状態よりも画像の摂動に頑健である。
CUB-200-2011とStanford Carsの2つのデータセットでこの結果を検証する。
関連論文リスト
- Mind the Gap Between Prototypes and Images in Cross-domain Finetuning [64.97317635355124]
プロトタイプと画像にそれぞれ異なる変換を適用するために,コントラスト型プロトタイプイメージ適応(CoPA)を提案する。
Meta-Datasetの実験では、CoPAが最先端のパフォーマンスをより効率的に達成できることが示されている。
論文 参考訳(メタデータ) (2024-10-16T11:42:11Z) - Sparse Prototype Network for Explainable Pedestrian Behavior Prediction [60.80524827122901]
Sparse Prototype Network (SPN) は,歩行者の将来の行動,軌道,ポーズを同時に予測するための説明可能な手法である。
モノセマンティリティとクラスタリングの制約によって規則化されたプロトタイプは、一貫性と人間の理解可能な機能を学ぶ。
論文 参考訳(メタデータ) (2024-10-16T03:33:40Z) - Multi-Scale Grouped Prototypes for Interpretable Semantic Segmentation [7.372346036256517]
意味的セグメンテーションを解釈可能なものにするための、有望なアプローチとして、プロトタイプ的な部分学習が登場している。
本稿では,多スケール画像表現を利用した意味的セグメンテーションの解釈手法を提案する。
Pascal VOC,Cityscapes,ADE20Kで行った実験により,提案手法はモデルの疎結合性を高め,既存のプロトタイプ手法よりも解釈可能性を高め,非解釈可能なモデルとの性能ギャップを狭めることを示した。
論文 参考訳(メタデータ) (2024-09-14T17:52:59Z) - This Looks Better than That: Better Interpretable Models with ProtoPNeXt [14.28283868577614]
原型部品モデルは、コンピュータビジョンのためのブラックボックスディープラーニングモデルに代わる一般的な解釈可能な代替品である。
原型モデルのコンポーネントを統合するための新しいフレームワーク、ProtoPNeXtを作成します。
論文 参考訳(メタデータ) (2024-06-20T18:54:27Z) - ProtoArgNet: Interpretable Image Classification with Super-Prototypes and Argumentation [Technical Report] [17.223442899324482]
ProtoArgNetは、原型的部分学習の精神における画像分類のための、解釈可能な新しいディープニューラルネットワークである。
ProtoArgNetは、prototypeal-partsを統一されたクラス表現に組み合わせたスーパープロトタイプを使用する。
我々は、ProtoArgNetが最先端のプロトタイプ・パートラーニングアプローチより優れているいくつかのデータセットを実証する。
論文 参考訳(メタデータ) (2023-11-26T21:52:47Z) - Sanity checks and improvements for patch visualisation in
prototype-based image classification [0.0]
プロトタイプに基づく視覚分類のための2つの一般的な自己説明モデルに実装された視覚的手法の詳細な分析を行う。
まず、そのような手法は画像内の関心領域を正確に識別せず、従ってモデル動作を反映しないことを示す。
我々は,同じ可視化手法を共有する他のプロトタイプベースモデルに対して,本研究がもたらす意味について論じる。
論文 参考訳(メタデータ) (2023-01-20T15:13:04Z) - Interpretable Image Classification with Differentiable Prototypes
Assignment [7.660883761395447]
クラスが共有するプロトタイプのプールを備えた解釈可能な画像分類モデルであるProtoPoolを紹介する。
プロトタイプを特定のクラスに完全に微分可能な割り当てを導入することで得られる。
我々は,CUB-200-2011とStanford Carsのデータセットにおいて,ProtoPoolが最先端の精度を得ることを示す。
論文 参考訳(メタデータ) (2021-12-06T10:03:32Z) - Dual Prototypical Contrastive Learning for Few-shot Semantic
Segmentation [55.339405417090084]
本稿では,FSSタスクに適合する2つの特徴的コントラスト学習手法を提案する。
第一の考え方は、プロトタイプの特徴空間におけるクラス内距離を減少させながら、クラス間距離を増やすことで、プロトタイプをより差別的にすることである。
提案手法は,PASCAL-5iおよびCOCO-20iデータセット上で,最先端のFSS手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-11-09T08:14:50Z) - Attentional Prototype Inference for Few-Shot Segmentation [128.45753577331422]
数発のセグメンテーションのための確率的潜在変数フレームワークである注意型プロトタイプ推論(API)を提案する。
我々は各オブジェクトカテゴリのプロトタイプを表現するためにグローバル潜在変数を定義し、確率分布としてモデル化する。
我々は4つのベンチマークで広範な実験を行い、提案手法は最先端のプロトタイプベースの手法よりも、少なくとも競争力があり、しばしば優れた性能が得られる。
論文 参考訳(メタデータ) (2021-05-14T06:58:44Z) - Prototypical Representation Learning for Relation Extraction [56.501332067073065]
本論文では, 遠隔ラベルデータから予測可能, 解釈可能, 堅牢な関係表現を学習することを目的とする。
文脈情報から各関係のプロトタイプを学習し,関係の本質的意味を最善に探求する。
いくつかの関係学習タスクの結果,本モデルが従来の関係モデルを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2021-03-22T08:11:43Z) - Part-aware Prototype Network for Few-shot Semantic Segmentation [50.581647306020095]
本稿では,プロトタイプ表現に基づく新規な数ショットセマンティックセマンティックセマンティクスフレームワークを提案する。
私たちのキーとなるアイデアは、全体論的なクラス表現を、部分認識型プロトタイプのセットに分解することです。
提案する部分認識型プロトタイプを生成・拡張する新しいグラフニューラルネットワークモデルを開発した。
論文 参考訳(メタデータ) (2020-07-13T11:03:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。