論文の概要: Adaptive noise imitation for image denoising
- arxiv url: http://arxiv.org/abs/2011.14512v1
- Date: Mon, 30 Nov 2020 02:49:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-06 14:37:56.667403
- Title: Adaptive noise imitation for image denoising
- Title(参考訳): 画像復調のための適応雑音模倣
- Authors: Huangxing Lin, Yihong Zhuang, Yue Huang, Xinghao Ding, Yizhou Yu,
Xiaoqing Liu and John Paisley
- Abstract要約: 本研究では,自然雑音画像からノイズデータを合成できる新しいテキストバッファ適応ノイズ模倣(ADANI)アルゴリズムを開発した。
現実的なノイズを生成するため、ノイズ発生装置はノイズ発生のガイドとなる雑音/クリーン画像を入力として利用する。
ADANIから出力されるノイズデータとそれに対応する基盤構造とを結合すると、デノイングCNNは、完全に教師された方法で訓練される。
- 参考スコア(独自算出の注目度): 58.21456707617451
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The effectiveness of existing denoising algorithms typically relies on
accurate pre-defined noise statistics or plenty of paired data, which limits
their practicality. In this work, we focus on denoising in the more common case
where noise statistics and paired data are unavailable. Considering that
denoising CNNs require supervision, we develop a new \textbf{adaptive noise
imitation (ADANI)} algorithm that can synthesize noisy data from naturally
noisy images. To produce realistic noise, a noise generator takes unpaired
noisy/clean images as input, where the noisy image is a guide for noise
generation. By imposing explicit constraints on the type, level and gradient of
noise, the output noise of ADANI will be similar to the guided noise, while
keeping the original clean background of the image. Coupling the noisy data
output from ADANI with the corresponding ground-truth, a denoising CNN is then
trained in a fully-supervised manner. Experiments show that the noisy data
produced by ADANI are visually and statistically similar to real ones so that
the denoising CNN in our method is competitive to other networks trained with
external paired data.
- Abstract(参考訳): 既存の denoising アルゴリズムの有効性は、通常、正確な事前定義されたノイズ統計や、その実用性を制限する大量のペアデータに依存する。
本研究は,ノイズ統計とペアデータの利用が不可能である,より一般的なケースにおける雑音除去に焦点をあてる。
雑音化cnnが監視を必要とすることを考慮し、自然雑音画像からノイズデータを合成する新しい \textbf{adaptive noise imitation (adani") アルゴリズムを開発した。
現実的なノイズを生成するため、ノイズ発生装置はノイズ発生のガイドとなる雑音/クリーン画像を入力として利用する。
ノイズの種類、レベル、勾配に明示的な制約を課すことで、アダニの出力ノイズは画像の本来の背景をきれいに保ちながら、ガイドノイズと類似する。
ADANIから出力されるノイズデータとそれに対応する基盤構造とを結合し、デノイングCNNを完全教師付きで訓練する。
実験の結果,adaniが生成するノイズデータは実データと視覚的および統計的に類似しており,外部対データで訓練された他のネットワークと競合することがわかった。
関連論文リスト
- NoiseDiffusion: Correcting Noise for Image Interpolation with Diffusion Models beyond Spherical Linear Interpolation [86.7260950382448]
画像の妥当性を補正する新しい手法としてノイズ拡散法を提案する。
NoiseDiffusionはノイズの多い画像空間内で動作し、これらのノイズの多い画像に生画像を注入することで、情報損失の課題に対処する。
論文 参考訳(メタデータ) (2024-03-13T12:32:25Z) - NoiseTransfer: Image Noise Generation with Contrastive Embeddings [9.322843611215486]
本稿では,複数のノイズ分布を持つ雑音像を合成できる新しい生成モデルを提案する。
我々は、雑音の識別可能な潜在特徴を学習するために、最近のコントラスト学習を採用する。
本モデルでは,単一の基準雑音画像からのみノイズ特性を伝達することにより,新しい雑音画像を生成することができる。
論文 参考訳(メタデータ) (2023-01-31T11:09:15Z) - NLIP: Noise-robust Language-Image Pre-training [95.13287735264937]
雑音調和と雑音補完という2つの手法を用いて事前学習の安定化を図るため,NLIPの原理的手法を提案する。
我々のNLIPは、画像テキスト事前学習における一般的なノイズ効果をより効率的に軽減することができる。
論文 参考訳(メタデータ) (2022-12-14T08:19:30Z) - Noise2NoiseFlow: Realistic Camera Noise Modeling without Clean Images [35.29066692454865]
本稿では,ノイズモデルとデノイザを同時にトレーニングするためのフレームワークを提案する。
ノイズ/クリーンなペア画像データではなく、ノイズの多いイメージのペアに依存します。
トレーニングされたデノイザーは、教師付きおよび弱教師付きベースラインデノイジングアプローチの両方において、大幅に改善される。
論文 参考訳(メタデータ) (2022-06-02T15:31:40Z) - Learning to Generate Realistic Noisy Images via Pixel-level Noise-aware
Adversarial Training [50.018580462619425]
我々は,PNGAN(Pixel-level Noise-aware Generative Adrial Network)という新しいフレームワークを提案する。
PNGANは、トレーニング済みのリアルデノイザーを使用して、フェイク画像とリアルノイズ画像をほぼノイズのないソリューション空間にマッピングする。
より優れたノイズフィッティングを実現するため,ジェネレータとしてSimple Multi-versa-scale Network (SMNet) を提案する。
論文 参考訳(メタデータ) (2022-04-06T14:09:02Z) - Estimating Fine-Grained Noise Model via Contrastive Learning [11.626812663592416]
本稿では,現実的な雑音画像生成のための革新的なノイズモデル推定とノイズ合成パイプラインを提案する。
本モデルでは, 微粒な統計的雑音モデルを用いた雑音推定モデルについて, 対照的に学習する。
いくつかのセンサのノイズモデルを校正することで、我々のモデルは他のカメラを予測できるように拡張することができる。
論文 参考訳(メタデータ) (2022-04-03T02:35:01Z) - IDR: Self-Supervised Image Denoising via Iterative Data Refinement [66.5510583957863]
本稿では,最先端のデノナイジング性能を実現するために,教師なしの実用的なデノナイジング手法を提案する。
本手法では, 1つのノイズ画像と1つのノイズモデルしか必要とせず, 実際の生画像に容易にアクセス可能である。
実世界のアプリケーションにおける生画像復調性能を評価するため,500シーンのシーンを含む高品質な生画像データセットSenseNoise-500を構築した。
論文 参考訳(メタデータ) (2021-11-29T07:22:53Z) - Rethinking Noise Synthesis and Modeling in Raw Denoising [75.55136662685341]
センサの実際の雑音を直接サンプリングすることで、ノイズを合成する新しい視点を導入する。
それは本質的に、異なるカメラセンサーに対して正確な生画像ノイズを発生させる。
論文 参考訳(メタデータ) (2021-10-10T10:45:24Z) - Learning Model-Blind Temporal Denoisers without Ground Truths [46.778450578529814]
合成データで訓練されたデノイザーは、未知のノイズの多様性に対処できないことが多い。
従来の画像ベース手法は、ビデオデノイザに直接適用した場合、ノイズが過度に収まる。
本稿では,これらの課題に対処する上で有効な,ビデオ・デノベーション・ネットワークの汎用フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-07T07:19:48Z) - NoiseBreaker: Gradual Image Denoising Guided by Noise Analysis [5.645552640953684]
本稿では,画像中の支配雑音を反復的に検出し,調整したデノイザを用いて除去する段階的なデノイズ戦略を提案する。
本手法は, 遭遇した騒音の性質を把握し, 既存の騒音を新しいノイズ特性で拡張することを可能にする。
論文 参考訳(メタデータ) (2020-02-18T11:09:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。