A Customizable Dynamic Scenario Modeling and Data Generation Platform
for Autonomous Driving
- URL: http://arxiv.org/abs/2011.14551v1
- Date: Mon, 30 Nov 2020 05:11:45 GMT
- Title: A Customizable Dynamic Scenario Modeling and Data Generation Platform
for Autonomous Driving
- Authors: Jay Shenoy, Edward Kim, Xiangyu Yue, Taesung Park, Daniel Fremont,
Alberto Sangiovanni-Vincentelli, Sanjit Seshia
- Abstract summary: We present a platform to model dynamic and interactive scenarios, generate the scenarios in simulation with different modalities of labeled sensor data, and collect this information for data augmentation.
To our knowledge, this is the first integrated platform for these tasks specialized to the autonomous driving domain.
- Score: 13.183176525300563
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Safely interacting with humans is a significant challenge for autonomous
driving. The performance of this interaction depends on machine learning-based
modules of an autopilot, such as perception, behavior prediction, and planning.
These modules require training datasets with high-quality labels and a diverse
range of realistic dynamic behaviors. Consequently, training such modules to
handle rare scenarios is difficult because they are, by definition, rarely
represented in real-world datasets. Hence, there is a practical need to augment
datasets with synthetic data covering these rare scenarios. In this paper, we
present a platform to model dynamic and interactive scenarios, generate the
scenarios in simulation with different modalities of labeled sensor data, and
collect this information for data augmentation. To our knowledge, this is the
first integrated platform for these tasks specialized to the autonomous driving
domain.
Related papers
- Unraveling the Effects of Synthetic Data on End-to-End Autonomous Driving [35.49042205415498]
We introduce SceneCrafter, a realistic, interactive, and efficient autonomous driving simulator based on 3D Gaussian Splatting (3DGS)
SceneCrafter efficiently generates realistic driving logs across diverse traffic scenarios.
It also enables robust closed-loop evaluation of end-to-end models.
arXiv Detail & Related papers (2025-03-23T15:27:43Z) - Graph Convolutional Networks for Complex Traffic Scenario Classification [0.7919810878571297]
A scenario-based testing approach can reduce the time required to obtain statistically significant evidence of the safety of Automated Driving Systems.
Most methods on scenario classification do not work for complex scenarios with diverse environments.
We propose a method for complex traffic scenario classification that is able to model the interaction of a vehicle with the environment.
arXiv Detail & Related papers (2023-10-26T20:51:24Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
We show data-driven traffic simulation can be formulated as a world model.
We present TrafficBots, a multi-agent policy built upon motion prediction and end-to-end driving.
Experiments on the open motion dataset show TrafficBots can simulate realistic multi-agent behaviors.
arXiv Detail & Related papers (2023-03-07T18:28:41Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
This work proposes a synthetic data generation pipeline to address the difficulties and domain-gaps present in simulated datasets.
We show that using annotations and visual cues from existing datasets, we can facilitate automated multi-modal data generation.
arXiv Detail & Related papers (2022-08-16T20:46:08Z) - CARNet: A Dynamic Autoencoder for Learning Latent Dynamics in Autonomous
Driving Tasks [11.489187712465325]
An autonomous driving system should effectively use the information collected from the various sensors in order to form an abstract description of the world.
Deep learning models, such as autoencoders, can be used for that purpose, as they can learn compact latent representations from a stream of incoming data.
This work proposes CARNet, a Combined dynAmic autoencodeR NETwork architecture that utilizes an autoencoder combined with a recurrent neural network to learn the current latent representation.
arXiv Detail & Related papers (2022-05-18T04:15:42Z) - Learning Interactive Driving Policies via Data-driven Simulation [125.97811179463542]
Data-driven simulators promise high data-efficiency for driving policy learning.
Small underlying datasets often lack interesting and challenging edge cases for learning interactive driving.
We propose a simulation method that uses in-painted ado vehicles for learning robust driving policies.
arXiv Detail & Related papers (2021-11-23T20:14:02Z) - Towards Optimal Strategies for Training Self-Driving Perception Models
in Simulation [98.51313127382937]
We focus on the use of labels in the synthetic domain alone.
Our approach introduces both a way to learn neural-invariant representations and a theoretically inspired view on how to sample the data from the simulator.
We showcase our approach on the bird's-eye-view vehicle segmentation task with multi-sensor data.
arXiv Detail & Related papers (2021-11-15T18:37:43Z) - Predicting Take-over Time for Autonomous Driving with Real-World Data:
Robust Data Augmentation, Models, and Evaluation [11.007092387379076]
We develop and train take-over time (TOT) models that operate on mid and high-level features produced by computer vision algorithms operating on different driver-facing camera views.
We show that a TOT model supported by augmented data can be used to produce continuous estimates of take-over times without delay.
arXiv Detail & Related papers (2021-07-27T16:39:50Z) - Diverse Complexity Measures for Dataset Curation in Self-driving [80.55417232642124]
We propose a new data selection method that exploits a diverse set of criteria that quantize interestingness of traffic scenes.
Our experiments show that the proposed curation pipeline is able to select datasets that lead to better generalization and higher performance.
arXiv Detail & Related papers (2021-01-16T23:45:02Z) - From Simulation to Real World Maneuver Execution using Deep
Reinforcement Learning [69.23334811890919]
Deep Reinforcement Learning has proved to be able to solve many control tasks in different fields, but the behavior of these systems is not always as expected when deployed in real-world scenarios.
This is mainly due to the lack of domain adaptation between simulated and real-world data together with the absence of distinction between train and test datasets.
We present a system based on multiple environments in which agents are trained simultaneously, evaluating the behavior of the model in different scenarios.
arXiv Detail & Related papers (2020-05-13T14:22:20Z) - From Data to Actions in Intelligent Transportation Systems: a
Prescription of Functional Requirements for Model Actionability [10.27718355111707]
This work aims to describe how data, coming from diverse ITS sources, can be used to learn and adapt data-driven models for efficiently operating ITS assets, systems and processes.
Grounded in this described data modeling pipeline for ITS, wedefine the characteristics, engineering requisites and intrinsic challenges to its three compounding stages, namely, data fusion, adaptive learning and model evaluation.
arXiv Detail & Related papers (2020-02-06T12:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.