All-Optical Long-Distance Quantum Communication with
Gottesman-Kitaev-Preskill qubits
- URL: http://arxiv.org/abs/2011.14876v2
- Date: Mon, 2 Aug 2021 04:07:36 GMT
- Title: All-Optical Long-Distance Quantum Communication with
Gottesman-Kitaev-Preskill qubits
- Authors: Kosuke Fukui, Rafael N. Alexander, Peter van Loock
- Abstract summary: Quantum repeaters are a promising platform for realizing long-distance quantum communication.
In this work, we consider implementing a quantum repeater protocol using Gottesman-Kitaev-Preskill qubits.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum repeaters are a promising platform for realizing long-distance
quantum communication and thus could form the backbone of a secure quantum
internet, a scalable quantum network, or a distributed quantum computer.
Repeater protocols that encode information in single- or multi-photon states
are limited by transmission losses and the cost of implementing entangling
gates or Bell measurements. In this work, we consider implementing a quantum
repeater protocol using Gottesman-Kitaev-Preskill (GKP) qubits. These qubits
are natural elements for quantum repeater protocols, because they allow for
deterministic Gaussian entangling operations and Bell measurements, which can
be implemented at room temperature. The GKP encoding is also capable of
correcting small displacement errors. At the cost of additional Gaussian noise,
photon loss can be converted into a random displacement error channel by
applying a phase-insensitive amplifier. Here we show that a similar conversion
can be achieved in two-way repeater protocols by using phase-sensitive
amplification applied in the post-processing of the measurement data, resulting
in less overall Gaussian noise per (sufficiently short) repeater segment. We
also investigate concatenating the GKP code with higher level qubit codes while
leveraging analog syndrome data, post-selection, and path-selection techniques
to boost the rate of communication. We compute the secure key rates and find
that GKP repeaters can achieve a comparative performance relative to methods
based on photonic qubits while using orders-of-magnitude fewer qubits.
Related papers
- Error-corrected quantum repeaters with GKP qudits [1.1279808969568252]
The Gottesman-Kitaev-Preskill (GKP) code offers the possibility to encode higher-dimensional qudits into individual bosonic modes.
The GKP code has found recent applications in theoretical investigations of quantum communication protocols.
arXiv Detail & Related papers (2023-03-28T15:04:06Z) - All-photonic GKP-qubit repeater using analog-information-assisted multiplexed entanglement ranking [2.2822295665974845]
We propose a novel strategy of using the bosonic Gottesman-Kitaev-Preskill code in a two-way repeater architecture with multiplexing.
GKP qubits easily admit deterministic two-qubit gates, hence allowing for multiplexing without the need for generating large cluster states.
We show that long-distance quantum communication over more than 1000 km is possible even with less than 13 dB of GKP squeezing.
arXiv Detail & Related papers (2023-03-27T05:44:49Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - All-photonic one-way quantum repeaters [15.3862808585761]
We propose a general framework for all-photonic one-way quantum repeaters based on the measurement-based error correction.
We present a novel decoding scheme, where the error correction process is carried out at the destination based on the accumulated data from the measurements made across the network.
arXiv Detail & Related papers (2022-10-18T18:07:19Z) - A Continuous Variable Quantum Switch [0.0]
We present a quantum repeating switch for CV quantum encodings that caters to multiple communication flows.
The architecture of the switch is based on quantum light sources, detectors, memories, and switching fabric.
We present numerical results on an achievable bipartite entanglement request rate region for multiple CV entanglement flows.
arXiv Detail & Related papers (2022-09-17T15:23:20Z) - Quantum Zeno Repeaters [0.0]
Quantum repeaters pave the way for long-distance quantum communications and quantum Internet.
Our work has potential to contribute to long distance quantum communications and quantum computing via quantum Zeno effect.
arXiv Detail & Related papers (2022-06-17T13:56:44Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.