Quantum Zeno Repeaters
- URL: http://arxiv.org/abs/2206.08785v1
- Date: Fri, 17 Jun 2022 13:56:44 GMT
- Title: Quantum Zeno Repeaters
- Authors: Veysel Bayrakci, Fatih Ozaydin
- Abstract summary: Quantum repeaters pave the way for long-distance quantum communications and quantum Internet.
Our work has potential to contribute to long distance quantum communications and quantum computing via quantum Zeno effect.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum repeaters pave the way for long-distance quantum communications and
quantum Internet, and the idea of quantum repeaters is based on entanglement
swapping which requires the implementation of controlled quantum gates.
Frequently measuring a quantum system affects its dynamics which is known as
the quantum Zeno effect (QZE). Beyond slowing down its evolution, QZE can be
used to control the dynamics of a quantum system by introducing a carefully
designed set of operations between measurements. Here, we propose an
entanglement swapping protocol based on QZE, which achieves almost unit
fidelity. Implementation of our protocol requires only simple frequent
threshold measurements and single particle rotations. We extend the proposed
entanglement swapping protocol to a series of repeater stations for
constructing quantum Zeno repeaters which also achieve almost unit fidelity
regardless of the number of repeaters. Requiring no controlled gates, our
proposal reduces the quantum circuit complexity of quantum repeaters. Our work
has potential to contribute to long distance quantum communications and quantum
computing via quantum Zeno effect.
Related papers
- Entanglement distribution based on quantum walk in arbitrary quantum networks [6.37705397840332]
We develop a series of scheme for generating high-dimensional entangled states via quantum walks with multiple coins or single coin.
We also give entanglement distribution schemes on arbitrary quantum networks according to the above theoretical framework.
Our work can serve as a building block for constructing larger and more complex quantum networks.
arXiv Detail & Related papers (2024-07-05T08:26:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Ultimate-rate quantum repeaters for quantum communications [0.0]
Quantum repeaters are necessary to overcome the repeaterless bound.
In this thesis, we give physical repeater designs for this achievability.
We also propose practical repeater designs with near-term potential for real-world practical applications.
arXiv Detail & Related papers (2023-06-15T02:19:18Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Quantum repeaters: From quantum networks to the quantum internet [2.053047357590719]
We review the conceptual frameworks and architectures for quantum repeaters.
We discuss the various near-term proposals to overcome the limits to the communication rates set by point-to-point quantum communication.
arXiv Detail & Related papers (2022-12-21T07:21:50Z) - Oblivious Quantum Computation and Delegated Multiparty Quantum
Computation [61.12008553173672]
We propose a new concept, oblivious computation quantum computation, where secrecy of the input qubits and the program to identify the quantum gates are required.
Exploiting quantum teleportation, we propose a two-server protocol for this task.
Also, we discuss delegated multiparty quantum computation, in which, several users ask multiparty quantum computation to server(s) only using classical communications.
arXiv Detail & Related papers (2022-11-02T09:01:33Z) - Backward propagating quantum repeater protocol with multiple quantum
memories [0.0]
We propose a quantum repeater protocol based on backward propagating photon emission and absorption.
It is applicable to various physical systems and opens up the possibility of high-speed high-fidelity quantum networks.
arXiv Detail & Related papers (2022-05-09T12:42:51Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Capacity-approaching quantum repeaters for quantum communications [0.0]
In present-day quantum communications, one of the main problems is the lack of a quantum repeater design that can simultaneously secure high rates and long distances.
Recent literature has established the end-to-end capacities that are achievable by the most general protocols for quantum and private communication within a quantum network.
We put forward a design for continuous-variable quantum repeaters and show that it can actually achieve the feat.
arXiv Detail & Related papers (2020-07-14T12:10:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.