Combinatorial Learning of Graph Edit Distance via Dynamic Embedding
- URL: http://arxiv.org/abs/2011.15039v2
- Date: Tue, 1 Dec 2020 02:05:29 GMT
- Title: Combinatorial Learning of Graph Edit Distance via Dynamic Embedding
- Authors: Runzhong Wang, Tianqi Zhang, Tianshu Yu, Junchi Yan, Xiaokang Yang
- Abstract summary: This paper presents a hybrid approach by combing the interpretability of traditional search-based techniques for producing the edit path.
Inspired by dynamic programming, node-level embedding is designated in a dynamic reuse fashion and suboptimal branches are encouraged to be pruned.
Experimental results on different graph datasets show that our approach can remarkably ease the search process of A* without sacrificing much accuracy.
- Score: 108.49014907941891
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Edit Distance (GED) is a popular similarity measurement for pairwise
graphs and it also refers to the recovery of the edit path from the source
graph to the target graph. Traditional A* algorithm suffers scalability issues
due to its exhaustive nature, whose search heuristics heavily rely on human
prior knowledge. This paper presents a hybrid approach by combing the
interpretability of traditional search-based techniques for producing the edit
path, as well as the efficiency and adaptivity of deep embedding models to
achieve a cost-effective GED solver. Inspired by dynamic programming,
node-level embedding is designated in a dynamic reuse fashion and suboptimal
branches are encouraged to be pruned. To this end, our method can be readily
integrated into A* procedure in a dynamic fashion, as well as significantly
reduce the computational burden with a learned heuristic. Experimental results
on different graph datasets show that our approach can remarkably ease the
search process of A* without sacrificing much accuracy. To our best knowledge,
this work is also the first deep learning-based GED method for recovering the
edit path.
Related papers
- GALA: Graph Diffusion-based Alignment with Jigsaw for Source-free Domain Adaptation [13.317620250521124]
Source-free domain adaptation is a crucial machine learning topic, as it contains numerous applications in the real world.
Recent graph neural network (GNN) approaches can suffer from serious performance decline due to domain shift and label scarcity.
We propose a novel method named Graph Diffusion-based Alignment with Jigsaw (GALA), tailored for source-free graph domain adaptation.
arXiv Detail & Related papers (2024-10-22T01:32:46Z) - EggNet: An Evolving Graph-based Graph Attention Network for Particle Track Reconstruction [0.0]
We consider a one-shot OC approach that reconstructs particle tracks directly from a set of hits.
This approach iteratively updates the graphs and can better facilitate the message passing across each graph.
Preliminary studies on the TrackML dataset show better track performance compared to the methods that require a fixed input graph.
arXiv Detail & Related papers (2024-07-18T22:29:24Z) - Preserving Node Distinctness in Graph Autoencoders via Similarity Distillation [9.395697548237333]
Graph autoencoders (GAEs) rely on distance-based criteria, such as mean-square-error (MSE) to reconstruct the input graph.
relying solely on a single reconstruction criterion may lead to a loss of distinctiveness in the reconstructed graph.
We have developed a simple yet effective strategy to preserve the necessary distinctness in the reconstructed graph.
arXiv Detail & Related papers (2024-06-25T12:54:35Z) - MATA*: Combining Learnable Node Matching with A* Algorithm for
Approximate Graph Edit Distance Computation [12.437507185260577]
The exact Graph Edit Distance (GED) computation is known to be NP-complete.
We present a data-driven hybrid approach MATA* for approximate GED computation based on Graph Neural Networks (GNNs) and A* algorithms.
arXiv Detail & Related papers (2023-11-04T09:33:08Z) - Efficient Dynamic Graph Representation Learning at Scale [66.62859857734104]
We propose Efficient Dynamic Graph lEarning (EDGE), which selectively expresses certain temporal dependency via training loss to improve the parallelism in computations.
We show that EDGE can scale to dynamic graphs with millions of nodes and hundreds of millions of temporal events and achieve new state-of-the-art (SOTA) performance.
arXiv Detail & Related papers (2021-12-14T22:24:53Z) - Dynamic Graph Representation Learning via Graph Transformer Networks [41.570839291138114]
We propose a Transformer-based dynamic graph learning method named Dynamic Graph Transformer (DGT)
DGT has spatial-temporal encoding to effectively learn graph topology and capture implicit links.
We show that DGT presents superior performance compared with several state-of-the-art baselines.
arXiv Detail & Related papers (2021-11-19T21:44:23Z) - A Bi-Level Framework for Learning to Solve Combinatorial Optimization on
Graphs [91.07247251502564]
We propose a hybrid approach to combine the best of the two worlds, in which a bi-level framework is developed with an upper-level learning method to optimize the graph.
Such a bi-level approach simplifies the learning on the original hard CO and can effectively mitigate the demand for model capacity.
arXiv Detail & Related papers (2021-06-09T09:18:18Z) - Learnable Graph Matching: Incorporating Graph Partitioning with Deep
Feature Learning for Multiple Object Tracking [58.30147362745852]
Data association across frames is at the core of Multiple Object Tracking (MOT) task.
Existing methods mostly ignore the context information among tracklets and intra-frame detections.
We propose a novel learnable graph matching method to address these issues.
arXiv Detail & Related papers (2021-03-30T08:58:45Z) - Deep Reinforcement Learning of Graph Matching [63.469961545293756]
Graph matching (GM) under node and pairwise constraints has been a building block in areas from optimization to computer vision.
We present a reinforcement learning solver for GM i.e. RGM that seeks the node correspondence between pairwise graphs.
Our method differs from the previous deep graph matching model in the sense that they are focused on the front-end feature extraction and affinity function learning.
arXiv Detail & Related papers (2020-12-16T13:48:48Z) - Graph Ordering: Towards the Optimal by Learning [69.72656588714155]
Graph representation learning has achieved a remarkable success in many graph-based applications, such as node classification, prediction, and community detection.
However, for some kind of graph applications, such as graph compression and edge partition, it is very hard to reduce them to some graph representation learning tasks.
In this paper, we propose to attack the graph ordering problem behind such applications by a novel learning approach.
arXiv Detail & Related papers (2020-01-18T09:14:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.