DiffGED: Computing Graph Edit Distance via Diffusion-based Graph Matching
- URL: http://arxiv.org/abs/2503.18245v1
- Date: Mon, 24 Mar 2025 00:03:16 GMT
- Title: DiffGED: Computing Graph Edit Distance via Diffusion-based Graph Matching
- Authors: Wei Huang, Hanchen Wang, Dong Wen, Wenjie Zhang, Ying Zhang, Xuemin Lin,
- Abstract summary: The Graph Edit Distance (GED) problem aims to compute the minimum number of edit operations required to transform one graph into another.<n>In this paper, we present a novel approach, DiffGED, that leverages generative diffusion model to solve GED and recover the corresponding edit path.
- Score: 32.853086706407986
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Graph Edit Distance (GED) problem, which aims to compute the minimum number of edit operations required to transform one graph into another, is a fundamental challenge in graph analysis with wide-ranging applications. However, due to its NP-hard nature, traditional A* approaches often suffer from scalability issue, making them computationally intractable for large graphs. Many recent deep learning frameworks address GED by formulating it as a regression task, which, while efficient, fails to recover the edit path -- a central interest in GED. Furthermore, recent hybrid approaches that combine deep learning with traditional methods to recover the edit path often yield poor solution quality. These methods also struggle to generate candidate solutions in parallel, resulting in increased running times.In this paper, we present a novel approach, DiffGED, that leverages generative diffusion model to solve GED and recover the corresponding edit path. Specifically, we first generate multiple diverse node matching matrices in parallel through a diffusion-based graph matching model. Next, node mappings are extracted from each generated matching matrices in parallel, and each extracted node mapping can be simply transformed into an edit path. Benefiting from the generative diversity provided by the diffusion model, DiffGED is less likely to fall into local sub-optimal solutions, thereby achieving superior overall solution quality close to the exact solution. Experimental results on real-world datasets demonstrate that DiffGED can generate multiple diverse edit paths with exceptionally high accuracy comparable to exact solutions while maintaining a running time shorter than most of hybrid approaches.
Related papers
- Ensemble Quadratic Assignment Network for Graph Matching [52.20001802006391]
Graph matching is a commonly used technique in computer vision and pattern recognition.
Recent data-driven approaches have improved the graph matching accuracy remarkably.
We propose a graph neural network (GNN) based approach to combine the advantages of data-driven and traditional methods.
arXiv Detail & Related papers (2024-03-11T06:34:05Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
This paper proposes a novel Deep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE) for attributed graph data.
The proposed method surpasses state-of-the-art baseline algorithms by a significant margin on different downstream tasks across popular datasets.
arXiv Detail & Related papers (2024-01-12T17:57:07Z) - MATA*: Combining Learnable Node Matching with A* Algorithm for
Approximate Graph Edit Distance Computation [12.437507185260577]
The exact Graph Edit Distance (GED) computation is known to be NP-complete.
We present a data-driven hybrid approach MATA* for approximate GED computation based on Graph Neural Networks (GNNs) and A* algorithms.
arXiv Detail & Related papers (2023-11-04T09:33:08Z) - Symmetry-preserving graph attention network to solve routing problems at
multiple resolutions [1.9304772860080408]
We introduce the first-ever completely equivariant model and training to solve problems.
It is essential to capture the multiscale structure of the input graph.
We propose a Multiresolution scheme in combination with Equi Graph Attention network (mEGAT) architecture.
arXiv Detail & Related papers (2023-10-24T06:22:20Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Addressing Heterophily in Node Classification with Graph Echo State
Networks [11.52174067809364]
We address the challenges of heterophilic graphs with Graph Echo State Network (GESN) for node classification.
GESN is a reservoir computing model for graphs, where node embeddings are computed by an untrained message-passing function.
Our experiments show that reservoir models are able to achieve better or comparable accuracy with respect to most fully trained deep models.
arXiv Detail & Related papers (2023-05-14T19:42:31Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
We propose a novel score-based generative model for graphs with a continuous-time framework.
We show that our method is able to generate molecules that lie close to the training distribution yet do not violate the chemical valency rule.
arXiv Detail & Related papers (2022-02-05T08:21:04Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Combinatorial Learning of Graph Edit Distance via Dynamic Embedding [108.49014907941891]
This paper presents a hybrid approach by combing the interpretability of traditional search-based techniques for producing the edit path.
Inspired by dynamic programming, node-level embedding is designated in a dynamic reuse fashion and suboptimal branches are encouraged to be pruned.
Experimental results on different graph datasets show that our approach can remarkably ease the search process of A* without sacrificing much accuracy.
arXiv Detail & Related papers (2020-11-30T17:41:02Z) - A Generative Graph Method to Solve the Travelling Salesman Problem [1.552282932199974]
We propose to use the novel Graph Learning Network (GLN), a generative approach, to approximately solve the Travelling Salesman Problem (TSP)
GLN model learns directly the pattern of TSP instances as training dataset, encodes the graph properties, and merge the different node embeddings to output node-to-node an optimal tour.
arXiv Detail & Related papers (2020-07-09T17:23:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.