論文の概要: Improving cluster recovery with feature rescaling factors
- arxiv url: http://arxiv.org/abs/2012.00477v1
- Date: Tue, 1 Dec 2020 13:29:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-31 06:37:54.722388
- Title: Improving cluster recovery with feature rescaling factors
- Title(参考訳): 機能再スケーリング因子によるクラスタリカバリの改善
- Authors: Renato Cordeiro de Amorim and Vladimir Makarenkov
- Abstract要約: 再スケーリング手順は、すべての機能を同一に扱うべきではない、と我々は主張する。
本稿では,各機能のクラスタ内関係を考慮に入れた機能再スケーリング手法を提案する。
提案手法を用いたクラスタリング手法は, 従来のデータ正規化手法よりも明らかに優れていることを示す。
- 参考スコア(独自算出の注目度): 2.4366811507669124
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The data preprocessing stage is crucial in clustering. Features may describe
entities using different scales. To rectify this, one usually applies feature
normalisation aiming at rescaling features so that none of them overpowers the
others in the objective function of the selected clustering algorithm. In this
paper, we argue that the rescaling procedure should not treat all features
identically. Instead, it should favour the features that are more meaningful
for clustering. With this in mind, we introduce a feature rescaling method that
takes into account the within-cluster degree of relevance of each feature. Our
comprehensive simulation study, carried out on real and synthetic data, with
and without noise features, clearly demonstrates that clustering methods that
use the proposed data normalization strategy clearly outperform those that use
traditional data normalization.
- Abstract(参考訳): データプリプロセッシングステージは、クラスタリングにおいて不可欠である。
特徴は異なるスケールを使ってエンティティを記述することができる。
これを正すために、通常は、選択したクラスタリングアルゴリズムの目的関数で他の機能を上回らないように、再スケーリングを目的とした機能正規化を適用する。
本稿では,再スケーリング手順がすべての特徴を同一に扱うべきではないことを論じる。
その代わり、クラスタリングにもっと意味のある機能を好むべきです。
このことを念頭に置いて,各機能のクラスタ内関連性を考慮した機能再スケーリング手法を提案する。
提案手法を用いたクラスタリング手法は, 従来のデータ正規化手法よりも明らかに優れていることを示す。
関連論文リスト
- GCC: Generative Calibration Clustering [55.44944397168619]
本稿では,特徴学習と拡張をクラスタリングに組み込む新しいGCC法を提案する。
まず,実検体と実検体間の固有関係を識別する識別的特徴アライメント機構を開発する。
第二に、より信頼性の高いクラスタ割り当てを生成するための自己教師付きメトリック学習を設計する。
論文 参考訳(メタデータ) (2024-04-14T01:51:11Z) - Spectral Clustering of Categorical and Mixed-type Data via Extra Graph
Nodes [0.0]
本稿では,数値情報と分類情報の両方をスペクトルクラスタリングアルゴリズムに組み込むための,より自然な方法について検討する。
データの属する可能性のある異なるカテゴリに対応する追加ノードの追加を提案し、それが解釈可能なクラスタリング対象関数に繋がることを示す。
この単純なフレームワークは、分類のみのデータに対する線形時間スペクトルクラスタリングアルゴリズムに繋がることを示す。
論文 参考訳(メタデータ) (2024-03-08T20:49:49Z) - Causal Feature Selection via Transfer Entropy [59.999594949050596]
因果発見は、観察データによる特徴間の因果関係を特定することを目的としている。
本稿では,前向きと後向きの機能選択に依存する新たな因果的特徴選択手法を提案する。
精度および有限サンプルの場合の回帰誤差と分類誤差について理論的に保証する。
論文 参考訳(メタデータ) (2023-10-17T08:04:45Z) - Nonlinear Feature Aggregation: Two Algorithms driven by Theory [45.3190496371625]
現実世界の機械学習アプリケーションは、膨大な機能によって特徴付けられ、計算やメモリの問題を引き起こす。
一般集約関数を用いて特徴量の非線形変換を集約する次元還元アルゴリズム(NonLinCFA)を提案する。
また、アルゴリズムを合成および実世界のデータセット上でテストし、回帰および分類タスクを実行し、競合性能を示す。
論文 参考訳(メタデータ) (2023-06-19T19:57:33Z) - Algorithm-Agnostic Interpretations for Clustering [0.0]
縮小次元におけるクラスタリング結果を説明するために,アルゴリズムに依存しない解釈法を提案する。
クラスタリングにおける置換機能の重要性は、特徴値のシャッフルに基づく一般的なフレームワークを表している。
すべてのメソッドは、任意のクラスタリングアルゴリズムを使って、ソフトラベルやハードラベルを通じてインスタンスを再割り当てすることができる。
論文 参考訳(メタデータ) (2022-09-21T18:08:40Z) - Selecting the suitable resampling strategy for imbalanced data
classification regarding dataset properties [62.997667081978825]
医学、情報検索、サイバーセキュリティ、ソーシャルメディアなどの多くのアプリケーションドメインでは、分類モデルの導入に使用されるデータセットは、各クラスのインスタンスの不平等な分布を持つことが多い。
この状況は不均衡データ分類と呼ばれ、少数民族の例では予測性能が低い。
オーバーサンプリングとアンダーサンプリングの技術は、各クラスの例の数とバランスをとることでこの問題に対処する、よく知られた戦略である。
論文 参考訳(メタデータ) (2021-12-15T18:56:39Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
セマンティックセグメンテーションのためのモデルに依存しない訓練手法を提案する。
各トレーニングイテレーションで特定のクラス情報をランダムに除去することにより、クラス間の機能依存を効果的に削減する。
提案手法で訓練したモデルは,複数のセマンティックセグメンテーションベンチマークにおいて強い結果を示す。
論文 参考訳(メタデータ) (2021-10-31T16:15:09Z) - Adaptive Graph-based Generalized Regression Model for Unsupervised
Feature Selection [11.214334712819396]
非相関的かつ識別的特徴の選択は、教師なしの機能選択の重要な問題である。
非相関制約と $ell_2,1$-norm 正規化によって課される新しい一般化回帰モデルを提案する。
それは同時に同じ近所に属するこれらのデータ ポイントの分散を減らすこと無相関および差別的な特徴を選ぶことができます。
論文 参考訳(メタデータ) (2020-12-27T09:07:26Z) - Decorrelated Clustering with Data Selection Bias [55.91842043124102]
本稿では,データ選択バイアスを伴うクラスタリングのためのデコリレーション正規化K-Meansアルゴリズム(DCKM)を提案する。
DCKMアルゴリズムは,選択バイアスによって生じる予期せぬ特徴相関を除去する必要があることを示す。
論文 参考訳(メタデータ) (2020-06-29T08:55:50Z) - New advances in enumerative biclustering algorithms with online
partitioning [80.22629846165306]
さらに、数値データセットの列に定数値を持つ最大二クラスタの効率的で完全で正しい非冗長列挙を実現できる二クラスタリングアルゴリズムであるRIn-Close_CVCを拡張した。
改良されたアルゴリズムはRIn-Close_CVC3と呼ばれ、RIn-Close_CVCの魅力的な特性を保ちます。
論文 参考訳(メタデータ) (2020-03-07T14:54:26Z) - Simple and Scalable Sparse k-means Clustering via Feature Ranking [14.839931533868176]
直感的で実装が簡単で,最先端のアルゴリズムと競合する,スパースk平均クラスタリングのための新しいフレームワークを提案する。
本手法は,属性のサブセットのクラスタリングや部分的に観測されたデータ設定など,タスク固有のアルゴリズムに容易に一般化できる。
論文 参考訳(メタデータ) (2020-02-20T02:41:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。