論文の概要: A Decade Survey of Content Based Image Retrieval using Deep Learning
- arxiv url: http://arxiv.org/abs/2012.00641v2
- Date: Thu, 20 May 2021 09:22:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-22 01:34:56.773579
- Title: A Decade Survey of Content Based Image Retrieval using Deep Learning
- Title(参考訳): ディープラーニングを用いたコンテンツベース画像検索の10年次調査
- Authors: Shiv Ram Dubey
- Abstract要約: 本稿では,コンテンツベース画像検索における過去10年間のディープラーニングベース開発に関する包括的調査について述べる。
クエリ画像の代表的な特徴とデータセット画像との類似性は、検索のために画像のランク付けに使用される。
ディープラーニングは、手作業で設計した機能工学の、10年前から支配的な代替手段として現れてきた。
- 参考スコア(独自算出の注目度): 13.778851745408133
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The content based image retrieval aims to find the similar images from a
large scale dataset against a query image. Generally, the similarity between
the representative features of the query image and dataset images is used to
rank the images for retrieval. In early days, various hand designed feature
descriptors have been investigated based on the visual cues such as color,
texture, shape, etc. that represent the images. However, the deep learning has
emerged as a dominating alternative of hand-designed feature engineering from a
decade. It learns the features automatically from the data. This paper presents
a comprehensive survey of deep learning based developments in the past decade
for content based image retrieval. The categorization of existing
state-of-the-art methods from different perspectives is also performed for
greater understanding of the progress. The taxonomy used in this survey covers
different supervision, different networks, different descriptor type and
different retrieval type. A performance analysis is also performed using the
state-of-the-art methods. The insights are also presented for the benefit of
the researchers to observe the progress and to make the best choices. The
survey presented in this paper will help in further research progress in image
retrieval using deep learning.
- Abstract(参考訳): コンテンツに基づく画像検索は、クエリ画像に対して大規模なデータセットから類似した画像を見つけることを目的としている。
一般に、検索画像の代表的特徴とデータセット画像との類似性を用いて検索画像のランク付けを行う。
初期には、画像を表す色、テクスチャ、形状などの視覚的な手がかりに基づいて、様々な手作りの特徴記述器が研究されてきた。
しかし、ディープラーニングは10年前から手作業で設計した機能工学に取って代わる存在として現れてきた。
データから自動的に特徴を学習する。
本稿では,過去10年間の深層学習に基づく画像検索に関する総合的な調査を行う。
進歩をより深く理解するために、異なる視点から既存の最先端のメソッドを分類する。
この調査で使用される分類は、異なる監督、異なるネットワーク、異なる記述型、異なる検索タイプを含む。
また、最先端手法を用いて性能解析を行う。
この洞察は、進歩を観察し、最良の選択をする研究者の利益のためにも示されています。
本稿では,ディープラーニングを用いた画像検索のさらなる研究を支援する。
関連論文リスト
- Pattern Spotting and Image Retrieval in Historical Documents using Deep
Hashing [60.67014034968582]
本稿では,歴史文書のデジタルコレクションにおける画像検索とパターンスポッティングのためのディープラーニング手法を提案する。
ディープラーニングモデルは、実数値またはバイナリコード表現を提供する2つの異なるバリエーションを考慮して、特徴抽出に使用される。
また,提案手法により検索時間を最大200倍に短縮し,関連する作業と比較してストレージコストを最大6,000倍に削減する。
論文 参考訳(メタデータ) (2022-08-04T01:39:37Z) - Recent Advances in Scene Image Representation and Classification [1.8369974607582584]
本稿では,画像分類に広く用いられている既存のシーン画像表現手法について概説する。
我々は、その性能を質的に(例えば、出力の品質、pros/consなど)、量的に(例えば、精度)比較する。
本稿では,従来のコンピュータビジョン(CV)ベースの手法,ディープラーニング(DL)ベースの手法,検索エンジン(SE)ベースの手法について,最近のシーン画像表現手法の詳細な知見と応用について述べる。
論文 参考訳(メタデータ) (2022-06-15T07:12:23Z) - Learning an Adaptation Function to Assess Image Visual Similarities [0.0]
ここでは、類推が重要となるとき、視覚的イメージ類似性を学ぶための特定のタスクに焦点を当てる。
本稿では,異なるスケールとコンテンツデータセットで事前学習した,教師付き,半教師付き,自己教師型ネットワークの比較を提案する。
The Totally Looks Like Image dataset conducted on the Totally Looks Like image highlight the interest of our method, by increase the search scores of the best model @1 by 2.25x。
論文 参考訳(メタデータ) (2022-06-03T07:15:00Z) - Automatic Image Content Extraction: Operationalizing Machine Learning in
Humanistic Photographic Studies of Large Visual Archives [81.88384269259706]
本稿では,機械学習による大規模画像アーカイブの検索と解析のための自動画像コンテンツ抽出フレームワークを提案する。
提案する枠組みは、人文科学と社会科学のいくつかの分野に適用できる。
論文 参考訳(メタデータ) (2022-04-05T12:19:24Z) - Dataset and Case Studies for Visual Near-Duplicates Detection in the
Context of Social Media [11.569861200214294]
視覚的に類似したコンテンツの追跡は、そのようなコンテンツの拡散に関連する社会現象を研究・分析する上で重要な課題である。
ソーシャルメディア画像のデータセットを構築し、画像検索といくつかの高度な視覚特徴抽出手法に基づいて視覚近距離検索手法を評価する。
論文 参考訳(メタデータ) (2022-03-14T15:10:30Z) - Where Does the Performance Improvement Come From? - A Reproducibility
Concern about Image-Text Retrieval [85.03655458677295]
画像テキスト検索は、情報検索分野において、徐々に主要な研究方向になりつつある。
まず、画像テキスト検索タスクに焦点が当てられている理由と関連性について検討する。
本研究では,事前学習と非事前学習による検索モデルの再現の諸側面を解析する。
論文 参考訳(メタデータ) (2022-03-08T05:01:43Z) - Contextual Similarity Aggregation with Self-attention for Visual
Re-ranking [96.55393026011811]
本稿では,自己注意を伴う文脈的類似性集約による視覚的再ランク付け手法を提案する。
提案手法の汎用性と有効性を示すため,4つのベンチマークデータセットの総合的な実験を行った。
論文 参考訳(メタデータ) (2021-10-26T06:20:31Z) - Survey of Visual-Semantic Embedding Methods for Zero-Shot Image
Retrieval [0.6091702876917279]
本稿では,文をクエリとして用いたゼロショット画像検索に着目し,この分野の技術動向調査を行う。
私たちは、画像とテキストのマッチングの初期の研究の議論から始まる技術の歴史の包括的な概要を提供します。
実験で一般的に使用されるデータセットの記述と,各手法の評価結果の比較を行った。
論文 参考訳(メタデータ) (2021-05-16T09:43:25Z) - Cross-Modal Retrieval Augmentation for Multi-Modal Classification [61.5253261560224]
画像の非構造化外部知識源とそれに対応するキャプションを用いて視覚的質問応答を改善する。
まず,画像とキャプションを同一空間に埋め込むための新しいアライメントモデルを訓練し,画像検索の大幅な改善を実現する。
第2に、トレーニングされたアライメントモデルを用いた検索強化マルチモーダルトランスは、強いベースライン上でのVQAの結果を改善することを示す。
論文 参考訳(メタデータ) (2021-04-16T13:27:45Z) - Image Segmentation Using Deep Learning: A Survey [58.37211170954998]
イメージセグメンテーションは、画像処理とコンピュータビジョンにおいて重要なトピックである。
深層学習モデルを用いた画像セグメンテーション手法の開発を目的とした研究が,これまでに数多く行われている。
論文 参考訳(メタデータ) (2020-01-15T21:37:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。