Intrusion Detection Systems for IoT: opportunities and challenges
offered by Edge Computing
- URL: http://arxiv.org/abs/2012.01174v1
- Date: Wed, 2 Dec 2020 13:07:27 GMT
- Title: Intrusion Detection Systems for IoT: opportunities and challenges
offered by Edge Computing
- Authors: Pietro Spadaccino and Francesca Cuomo
- Abstract summary: Key components of current cybersecurity methods are the Intrusion Detection Systems (IDSs)
IDSs can be based either on cross-checking monitored events with a database of known intrusion experiences, known as signature-based, or on learning the normal behavior of the system.
This work is dedicated to the application to the Internet of Things (IoT) network where edge computing is used to support the IDS implementation.
- Score: 1.7589792057098648
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Key components of current cybersecurity methods are the Intrusion Detection
Systems (IDSs) were different techniques and architectures are applied to
detect intrusions. IDSs can be based either on cross-checking monitored events
with a database of known intrusion experiences, known as signature-based, or on
learning the normal behavior of the system and reporting whether some anomalous
events occur, named anomaly-based. This work is dedicated to the application to
the Internet of Things (IoT) network where edge computing is used to support
the IDS implementation. New challenges that arise when deploying an IDS in an
edge scenario are identified and remedies are proposed. We focus on
anomaly-based IDSs, showing the main techniques that can be leveraged to detect
anomalies and we present machine learning techniques and their application in
the context of an IDS, describing the expected advantages and disadvantages
that a specific technique could cause.
Related papers
- Federated PCA on Grassmann Manifold for IoT Anomaly Detection [23.340237814344384]
Traditional machine learning-based intrusion detection systems (ML-IDS) possess limitations such as the requirement for labeled data.
Recent unsupervised ML-IDS approaches such as AutoEncoders and Generative Adversarial Networks (GAN) offer alternative solutions.
This paper proposes a novel federated unsupervised anomaly detection framework, FedPCA, that learns common representations of distributed non-i.i.d. datasets.
arXiv Detail & Related papers (2024-07-10T07:23:21Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - A near-autonomous and incremental intrusion detection system through active learning of known and unknown attacks [2.686686221415684]
Intrusion detection is a traditional practice of security experts, however, there are several issues which still need to be tackled.
We present an architecture for a hybrid Intrusion Detection System (IDS) for an adaptive and incremental detection of both known and unknown attacks.
arXiv Detail & Related papers (2023-10-26T14:37:54Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
Anomaly detection plays a fundamental role in various applications.
It is challenging for existing methods to handle the scenarios where the instances are systems whose characteristics are not readily observed as data.
We develop an end-to-end approach which includes an encoder-decoder module that learns system embeddings.
arXiv Detail & Related papers (2023-04-21T02:20:24Z) - End-To-End Anomaly Detection for Identifying Malicious Cyber Behavior
through NLP-Based Log Embeddings [0.0]
Rule-based IDS are being replaced by more robust neural IDS.
We propose a deep end-to-end framework with NLP-inspired components for identifying potentially malicious behaviors.
arXiv Detail & Related papers (2021-08-27T13:49:00Z) - Evaluating Federated Learning for Intrusion Detection in Internet of
Things: Review and Challenges [0.0]
Federated Learning (FL) has attracted a significant interest in different sectors, including healthcare and transport systems.
We evaluate a FL-enabled IDS approach based on a multiclass classifier considering different data distributions for the detection of different attacks in an IoT scenario.
We identify a set of challenges and future directions based on the existing literature and the analysis of our evaluation results.
arXiv Detail & Related papers (2021-08-02T15:22:05Z) - Towards a Privacy-preserving Deep Learning-based Network Intrusion
Detection in Data Distribution Services [0.0]
Data Distribution Service (DDS) is an innovative approach towards communication in ICS/IoT infrastructure and robotics.
Traditional intrusion detection systems (IDS) do not detect any anomalies in the publish/subscribe method.
This report presents an experimental work on simulation and application of Deep Learning for their detection.
arXiv Detail & Related papers (2021-06-12T12:53:38Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
This paper describes the system design of an AIOps platform which is applicable in heterogeneous, distributed environments.
It is feasible to collect metrics with a high frequency and simultaneously run specific anomaly detection algorithms directly on edge devices.
arXiv Detail & Related papers (2021-02-12T09:33:00Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z) - Data Mining with Big Data in Intrusion Detection Systems: A Systematic
Literature Review [68.15472610671748]
Cloud computing has become a powerful and indispensable technology for complex, high performance and scalable computation.
The rapid rate and volume of data creation has begun to pose significant challenges for data management and security.
The design and deployment of intrusion detection systems (IDS) in the big data setting has, therefore, become a topic of importance.
arXiv Detail & Related papers (2020-05-23T20:57:12Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
We review the methods that have been applied to network data with the purpose of developing an intrusion detector.
We discuss the techniques used for the capture, preparation and transformation of the data, as well as, the data mining and evaluation methods.
As a result of this literature review, we investigate some open issues which will need to be considered for further research in the area of network security.
arXiv Detail & Related papers (2020-01-27T11:21:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.