Federated PCA on Grassmann Manifold for IoT Anomaly Detection
- URL: http://arxiv.org/abs/2407.07421v1
- Date: Wed, 10 Jul 2024 07:23:21 GMT
- Title: Federated PCA on Grassmann Manifold for IoT Anomaly Detection
- Authors: Tung-Anh Nguyen, Long Tan Le, Tuan Dung Nguyen, Wei Bao, Suranga Seneviratne, Choong Seon Hong, Nguyen H. Tran,
- Abstract summary: Traditional machine learning-based intrusion detection systems (ML-IDS) possess limitations such as the requirement for labeled data.
Recent unsupervised ML-IDS approaches such as AutoEncoders and Generative Adversarial Networks (GAN) offer alternative solutions.
This paper proposes a novel federated unsupervised anomaly detection framework, FedPCA, that learns common representations of distributed non-i.i.d. datasets.
- Score: 23.340237814344384
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: With the proliferation of the Internet of Things (IoT) and the rising interconnectedness of devices, network security faces significant challenges, especially from anomalous activities. While traditional machine learning-based intrusion detection systems (ML-IDS) effectively employ supervised learning methods, they possess limitations such as the requirement for labeled data and challenges with high dimensionality. Recent unsupervised ML-IDS approaches such as AutoEncoders and Generative Adversarial Networks (GAN) offer alternative solutions but pose challenges in deployment onto resource-constrained IoT devices and in interpretability. To address these concerns, this paper proposes a novel federated unsupervised anomaly detection framework, FedPCA, that leverages Principal Component Analysis (PCA) and the Alternating Directions Method Multipliers (ADMM) to learn common representations of distributed non-i.i.d. datasets. Building on the FedPCA framework, we propose two algorithms, FEDPE in Euclidean space and FEDPG on Grassmann manifolds. Our approach enables real-time threat detection and mitigation at the device level, enhancing network resilience while ensuring privacy. Moreover, the proposed algorithms are accompanied by theoretical convergence rates even under a subsampling scheme, a novel result. Experimental results on the UNSW-NB15 and TON-IoT datasets show that our proposed methods offer performance in anomaly detection comparable to nonlinear baselines, while providing significant improvements in communication and memory efficiency, underscoring their potential for securing IoT networks.
Related papers
- Towards Resource-Efficient Federated Learning in Industrial IoT for Multivariate Time Series Analysis [50.18156030818883]
Anomaly and missing data constitute a thorny problem in industrial applications.
Deep learning enabled anomaly detection has emerged as a critical direction.
The data collected in edge devices contain user privacy.
arXiv Detail & Related papers (2024-11-06T15:38:31Z) - FedMADE: Robust Federated Learning for Intrusion Detection in IoT Networks Using a Dynamic Aggregation Method [7.842334649864372]
Internet of Things (IoT) devices across multiple sectors has escalated serious network security concerns.
Traditional Machine Learning (ML)-based Intrusion Detection Systems (IDSs) for cyber-attack classification require data transmission from IoT devices to a centralized server for traffic analysis, raising severe privacy concerns.
We introduce FedMADE, a novel dynamic aggregation method, which clusters devices by their traffic patterns and aggregates local models based on their contributions towards overall performance.
arXiv Detail & Related papers (2024-08-13T18:42:34Z) - HUWSOD: Holistic Self-training for Unified Weakly Supervised Object Detection [66.42229859018775]
We introduce a unified, high-capacity weakly supervised object detection (WSOD) network called HUWSOD.
HUWSOD incorporates a self-supervised proposal generator and an autoencoder proposal generator with a multi-rate re-supervised pyramid to replace traditional object proposals.
Our findings indicate that randomly boxes, although significantly different from well-designed offline object proposals, are effective for WSOD training.
arXiv Detail & Related papers (2024-06-27T17:59:49Z) - Enhancing IoT Security: A Novel Feature Engineering Approach for ML-Based Intrusion Detection Systems [1.749521391198341]
The integration of Internet of Things (IoT) applications in our daily lives has led to a surge in data traffic, posing significant security challenges.
This paper focuses on improving the effectiveness of ML-based IDS at the edge level by introducing a novel method to find a balanced trade-off between cost and accuracy.
arXiv Detail & Related papers (2024-04-29T21:26:18Z) - EG-ConMix: An Intrusion Detection Method based on Graph Contrastive Learning [4.140068761522124]
We propose an EG-ConMix method based on E-GraphSAGE, incorporating a data augmentation module to fix the problem of data imbalance.
EG-ConMix exhibits significant advantages in terms of training speed and accuracy for large-scale graphs.
arXiv Detail & Related papers (2024-03-24T04:09:48Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Federated PCA on Grassmann Manifold for Anomaly Detection in IoT
Networks [19.861389496676964]
Principal Components Analysis (PCA) has been proposed to separate network traffics into two disjoint subspaces corresponding to normal and malicious behaviors for anomaly detection.
We propose a federated PCA-based Grassmannian optimization framework that coordinates IoT devices to aggregate a joint profile of normal network behaviors for anomaly detection.
arXiv Detail & Related papers (2022-12-23T03:11:56Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
This paper describes the system design of an AIOps platform which is applicable in heterogeneous, distributed environments.
It is feasible to collect metrics with a high frequency and simultaneously run specific anomaly detection algorithms directly on edge devices.
arXiv Detail & Related papers (2021-02-12T09:33:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.