Deep learning based numerical approximation algorithms for stochastic
partial differential equations and high-dimensional nonlinear filtering
problems
- URL: http://arxiv.org/abs/2012.01194v1
- Date: Wed, 2 Dec 2020 13:25:35 GMT
- Title: Deep learning based numerical approximation algorithms for stochastic
partial differential equations and high-dimensional nonlinear filtering
problems
- Authors: Christian Beck, Sebastian Becker, Patrick Cheridito, Arnulf Jentzen,
Ariel Neufeld
- Abstract summary: In this article we introduce and study a deep learning based approximation algorithm for solutions of partial differential equations (SPDEs)
We employ a deep neural network for every realization of the driving noise process of the SPDE to approximate the solution process of the SPDE under consideration.
In each of these SPDEs the proposed approximation algorithm produces accurate results with short run times in up to 50 space dimensions.
- Score: 4.164845768197489
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this article we introduce and study a deep learning based approximation
algorithm for solutions of stochastic partial differential equations (SPDEs).
In the proposed approximation algorithm we employ a deep neural network for
every realization of the driving noise process of the SPDE to approximate the
solution process of the SPDE under consideration. We test the performance of
the proposed approximation algorithm in the case of stochastic heat equations
with additive noise, stochastic heat equations with multiplicative noise,
stochastic Black--Scholes equations with multiplicative noise, and Zakai
equations from nonlinear filtering. In each of these SPDEs the proposed
approximation algorithm produces accurate results with short run times in up to
50 space dimensions.
Related papers
- Solving Fractional Differential Equations on a Quantum Computer: A Variational Approach [0.1492582382799606]
We introduce an efficient variational hybrid quantum-classical algorithm designed for solving Caputo time-fractional partial differential equations.
Our results indicate that solution fidelity is insensitive to the fractional index and that gradient evaluation cost scales economically with the number of time steps.
arXiv Detail & Related papers (2024-06-13T02:27:16Z) - Differentially Private Optimization with Sparse Gradients [60.853074897282625]
We study differentially private (DP) optimization problems under sparsity of individual gradients.
Building on this, we obtain pure- and approximate-DP algorithms with almost optimal rates for convex optimization with sparse gradients.
arXiv Detail & Related papers (2024-04-16T20:01:10Z) - Solving Systems of Linear Equations: HHL from a Tensor Networks Perspective [39.58317527488534]
We present an algorithm for solving systems of linear equations based on the HHL algorithm with a novel qudits methodology.
We perform a quantum-inspired version on tensor networks, taking advantage of their ability to perform non-unitary operations such as projection.
arXiv Detail & Related papers (2023-09-11T08:18:41Z) - Efficient Quantum Algorithms for Nonlinear Stochastic Dynamical Systems [2.707154152696381]
We propose efficient quantum algorithms for solving nonlinear differential equations (SDE) via the associated Fokker-Planck equation (FPE)
We discretize the FPE in space and time using two well-known numerical schemes, namely Chang-Cooper and implicit finite difference.
We then compute the solution of the resulting system of linear equations using the quantum linear systems.
arXiv Detail & Related papers (2023-03-04T17:40:23Z) - Optimal Algorithms for the Inhomogeneous Spiked Wigner Model [89.1371983413931]
We derive an approximate message-passing algorithm (AMP) for the inhomogeneous problem.
We identify in particular the existence of a statistical-to-computational gap where known algorithms require a signal-to-noise ratio bigger than the information-theoretic threshold to perform better than random.
arXiv Detail & Related papers (2023-02-13T19:57:17Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - Deep learning numerical methods for high-dimensional fully nonlinear
PIDEs and coupled FBSDEs with jumps [26.28912742740653]
We propose a deep learning algorithm for solving high-dimensional parabolic integro-differential equations (PIDEs)
The jump-diffusion process are derived by a Brownian motion and an independent compensated Poisson random measure.
To derive the error estimates for this deep learning algorithm, the convergence of Markovian, the error bound of Euler time discretization, and the simulation error of deep learning algorithm are investigated.
arXiv Detail & Related papers (2023-01-30T13:55:42Z) - An application of the splitting-up method for the computation of a
neural network representation for the solution for the filtering equations [68.8204255655161]
Filtering equations play a central role in many real-life applications, including numerical weather prediction, finance and engineering.
One of the classical approaches to approximate the solution of the filtering equations is to use a PDE inspired method, called the splitting-up method.
We combine this method with a neural network representation to produce an approximation of the unnormalised conditional distribution of the signal process.
arXiv Detail & Related papers (2022-01-10T11:01:36Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
We study a class of algorithms for solving bilevel optimization problems in both deterministic and deterministic settings.
We exploit a warm-start strategy to amortize the estimation of the exact gradient.
By using this framework, our analysis shows these algorithms to match the computational complexity of methods that have access to an unbiased estimate of the gradient.
arXiv Detail & Related papers (2021-11-29T15:10:09Z) - Optimization and Noise Analysis of the Quantum Algorithm for Solving
One-Dimensional Poisson Equation [17.65730040410185]
We propose an efficient quantum algorithm for solving one-dimensional Poisson equation.
We further develop this algorithm to make it closer to the real application on the noisy intermediate-scale quantum (NISQ) devices.
We analyze the effect of common noise existing in the real quantum devices on our algorithm using the IBM Qiskit toolkit.
arXiv Detail & Related papers (2021-08-27T09:44:41Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
This class of algorithms encompasses several randomized methods among the fastest solvers for least-squares problems.
We focus on two classical embeddings, namely, Gaussian projections and subsampled Hadamard transforms.
Our resulting algorithm yields the best complexity known for solving least-squares problems with no condition number dependence.
arXiv Detail & Related papers (2020-02-21T17:45:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.