Solving Fractional Differential Equations on a Quantum Computer: A Variational Approach
- URL: http://arxiv.org/abs/2406.08755v1
- Date: Thu, 13 Jun 2024 02:27:16 GMT
- Title: Solving Fractional Differential Equations on a Quantum Computer: A Variational Approach
- Authors: Fong Yew Leong, Dax Enshan Koh, Jian Feng Kong, Siong Thye Goh, Jun Yong Khoo, Wei-Bin Ewe, Hongying Li, Jayne Thompson, Dario Poletti,
- Abstract summary: We introduce an efficient variational hybrid quantum-classical algorithm designed for solving Caputo time-fractional partial differential equations.
Our results indicate that solution fidelity is insensitive to the fractional index and that gradient evaluation cost scales economically with the number of time steps.
- Score: 0.1492582382799606
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce an efficient variational hybrid quantum-classical algorithm designed for solving Caputo time-fractional partial differential equations. Our method employs an iterable cost function incorporating a linear combination of overlap history states. The proposed algorithm is not only efficient in time complexity, but has lower memory costs compared to classical methods. Our results indicate that solution fidelity is insensitive to the fractional index and that gradient evaluation cost scales economically with the number of time steps. As a proof of concept, we apply our algorithm to solve a range of fractional partial differential equations commonly encountered in engineering applications, such as the sub-diffusion equation, the non-linear Burgers' equation and a coupled diffusive epidemic model. We assess quantum hardware performance under realistic noise conditions, further validating the practical utility of our algorithm.
Related papers
- H-DES: a Quantum-Classical Hybrid Differential Equation Solver [0.0]
We introduce an original hybrid quantum-classical algorithm for solving systems of differential equations.
The algorithm relies on a spectral method, which involves encoding the solution functions in the amplitudes of the quantum states generated by different parametrized circuits.
arXiv Detail & Related papers (2024-10-01T23:47:41Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Efficient Quantum Algorithms for Nonlinear Stochastic Dynamical Systems [2.707154152696381]
We propose efficient quantum algorithms for solving nonlinear differential equations (SDE) via the associated Fokker-Planck equation (FPE)
We discretize the FPE in space and time using two well-known numerical schemes, namely Chang-Cooper and implicit finite difference.
We then compute the solution of the resulting system of linear equations using the quantum linear systems.
arXiv Detail & Related papers (2023-03-04T17:40:23Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
Symbolic recovery of differential equations is the ambitious attempt at automating the derivation of governing equations.
We provide both necessary and sufficient conditions for a function to uniquely determine the corresponding differential equation.
We then use our results to devise numerical algorithms aiming to determine whether a function solves a differential equation uniquely.
arXiv Detail & Related papers (2022-10-15T17:32:49Z) - Alternatives to a nonhomogeneous partial differential equation quantum
algorithm [52.77024349608834]
We propose a quantum algorithm for solving nonhomogeneous linear partial differential equations of the form $Apsi(textbfr)=f(textbfr)$.
These achievements enable easier experimental implementation of the quantum algorithm based on nowadays technology.
arXiv Detail & Related papers (2022-05-11T14:29:39Z) - Automated differential equation solver based on the parametric
approximation optimization [77.34726150561087]
The article presents a method that uses an optimization algorithm to obtain a solution using the parameterized approximation.
It allows solving the wide class of equations in an automated manner without the algorithm's parameters change.
arXiv Detail & Related papers (2022-05-11T10:06:47Z) - Variational Quantum Evolution Equation Solver [0.0]
Variational quantum algorithms offer a promising new paradigm for solving partial differential equations on near-term quantum computers.
We propose a variational quantum algorithm for solving a general evolution equation through implicit time-stepping of the Laplacian operator.
We present a semi-implicit scheme for solving systems of evolution equations with non-linear terms, such as the reaction-diffusion and the incompressible Navier-Stokes equations.
arXiv Detail & Related papers (2022-04-06T16:02:11Z) - Twisted hybrid algorithms for combinatorial optimization [68.8204255655161]
Proposed hybrid algorithms encode a cost function into a problem Hamiltonian and optimize its energy by varying over a set of states with low circuit complexity.
We show that for levels $p=2,ldots, 6$, the level $p$ can be reduced by one while roughly maintaining the expected approximation ratio.
arXiv Detail & Related papers (2022-03-01T19:47:16Z) - QBoost for regression problems: solving partial differential equations [0.0]
The hybrid algorithm is capable of finding a solution to a partial differential equation with good precision and favorable scaling in the required number of qubits.
The classical part is composed by training several regressors, capable of solving a partial differential equation using machine learning.
The quantum part consists of adapting the QBoost algorithm to solve regression problems.
arXiv Detail & Related papers (2021-08-30T16:13:04Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
We present a classical algorithm to find approximate solutions to instances of quadratic unconstrained binary optimisation.
We benchmark our approach for large scale problem instances with tuneable hardness and planted solutions.
arXiv Detail & Related papers (2021-08-18T09:26:17Z) - Scalable Gradients for Stochastic Differential Equations [40.70998833051251]
adjoint sensitivity method scalably computes gradients of ordinary differential equations.
We generalize this method to differential equations, allowing time-efficient and constant-memory computation.
We use our method to fit neural dynamics defined by networks, achieving competitive performance on a 50-dimensional motion capture dataset.
arXiv Detail & Related papers (2020-01-05T23:05:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.