論文の概要: Attention-gating for improved radio galaxy classification
- arxiv url: http://arxiv.org/abs/2012.01248v2
- Date: Mon, 1 Feb 2021 13:09:41 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-30 09:05:53.567016
- Title: Attention-gating for improved radio galaxy classification
- Title(参考訳): 改良された電波銀河分類のためのアテンションゲーティング
- Authors: Micah Bowles, Anna M. M. Scaife, Fiona Porter, Hongming Tang, David J.
Bastien
- Abstract要約: 本稿では,畳み込みニューラルネットワークを用いた電波銀河の分類技術として注目される。
注意図作成に使用される正規化と集約の方法の選択が個々のモデルの出力にどのように影響するかを示す。
得られたアテンションマップは、モデルによってなされた分類選択を解釈するために使用することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work we introduce attention as a state of the art mechanism for
classification of radio galaxies using convolutional neural networks. We
present an attention-based model that performs on par with previous classifiers
while using more than 50% fewer parameters than the next smallest classic CNN
application in this field. We demonstrate quantitatively how the selection of
normalisation and aggregation methods used in attention-gating can affect the
output of individual models, and show that the resulting attention maps can be
used to interpret the classification choices made by the model. We observe that
the salient regions identified by the our model align well with the regions an
expert human classifier would attend to make equivalent classifications. We
show that while the selection of normalisation and aggregation may only
minimally affect the performance of individual models, it can significantly
affect the interpretability of the respective attention maps and by selecting a
model which aligns well with how astronomers classify radio sources by eye, a
user can employ the model in a more effective manner.
- Abstract(参考訳): 本研究では,畳み込みニューラルネットワークを用いた電波銀河の分類技術として注目される。
この分野では、次の最小のCNNアプリケーションよりも50%以上少ないパラメータを使用しながら、従来の分類器と同等のアテンションベースモデルを提案する。
注意図作成に使用される正規化と集約法の選択が個々のモデルの出力にどのように影響するかを定量的に示し、その結果の注意マップを用いて、モデルによる分類選択を解釈できることを示す。
我々は,本モデルで同定された有能な領域が,有能な人間分類器が同等の分類を行う領域とよく一致していることを観察した。
正規化とアグリゲーションの選択は個々のモデルの性能にはほとんど影響しないが、それぞれの注意マップの解釈可能性に大きな影響を与え、天文学者が電波源を目で分類する方法とよく一致したモデルを選択することで、より効果的な方法でモデルを利用できることを示す。
関連論文リスト
- Diffusion Models Beat GANs on Image Classification [37.70821298392606]
拡散モデルは、画像生成、復調、塗装、超解像、操作などの最先端の手法として注目されている。
本稿では,これらの埋め込みは識別情報を含むため,ノイズ予測タスクを超えて有用であり,分類にも活用できることを示す。
注意深い特徴選択とプーリングにより、拡散モデルは、分類タスクにおいて同等な生成的識別的手法より優れていることが判明した。
論文 参考訳(メタデータ) (2023-07-17T17:59:40Z) - Semantic Embedded Deep Neural Network: A Generic Approach to Boost
Multi-Label Image Classification Performance [10.257208600853199]
本稿では,空間認識のセマンティックな特徴を応用するために,汎用的なセマンティック埋め込み型ディープニューラルネットワークを提案する。
Avg.relative Improvement of 15.27% in terms of AUC score across all labels than the baseline approach。
論文 参考訳(メタデータ) (2023-05-09T07:44:52Z) - Domain Adaptive Nuclei Instance Segmentation and Classification via
Category-aware Feature Alignment and Pseudo-labelling [65.40672505658213]
本稿では, UDA 核インスタンス分割と分類のための新しいディープニューラルネットワークである Category-Aware 機能アライメントと Pseudo-Labelling Network (CAPL-Net) を提案する。
我々のアプローチは、最先端のUDA手法よりも顕著なマージンで優れています。
論文 参考訳(メタデータ) (2022-07-04T07:05:06Z) - Weakly-supervised segmentation using inherently-explainable
classification models and their application to brain tumour classification [0.46873264197900916]
本稿では,これら2つの問題に1つとして対処するために,本質的に説明可能な3つの分類法を提案する。
モデルは2つの異なるデータセットを用いたマルチクラス脳腫瘍分類のタスクに採用された。
得られた腫瘍のみの画像のサブセットの精度は、最先端のグリオーマ腫瘍グレーディングバイナリ分類器を98.7%の精度で上回った。
論文 参考訳(メタデータ) (2022-06-10T14:44:05Z) - A Gating Model for Bias Calibration in Generalized Zero-shot Learning [18.32369721322249]
汎用ゼロショット学習(GZSL)は,補助情報のみを用いることで,見つからないクラスデータに一般化できるモデルを訓練することを目的とする。
GZSLの主な課題の1つは、トレーニング中に利用可能なクラスデータのみに過度に適合することに起因する、見かけたクラスに対するバイアス付きモデル予測である。
GZSLのための2ストリームオートエンコーダに基づくゲーティングモデルを提案する。
論文 参考訳(メタデータ) (2022-03-08T16:41:06Z) - Modeling Category-Selective Cortical Regions with Topographic
Variational Autoencoders [72.15087604017441]
カテゴリー選択性(英: Category-Selectivity)は、大脳皮質の特定の空間的局所化領域が特定の限られたカテゴリーからの刺激に対して頑健かつ選択的に反応する傾向にあるという観察を記述している。
新たに導入されたTopographic Variational Autoencoderを利用して、そのような局所化カテゴリ選択性の出現を教師なしでモデル化する。
本研究では,ヒト腹側頭皮質の観察に類似した,より抽象的なカテゴリのネストされた空間的階層が得られたことを示す予備的な結果を示す。
論文 参考訳(メタデータ) (2021-10-25T11:37:41Z) - Calibrating Class Activation Maps for Long-Tailed Visual Recognition [60.77124328049557]
本稿では,CNNの長期分布からネットワーク学習を改善するための2つの効果的な修正を提案する。
まず,ネットワーク分類器の学習と予測を改善するために,CAMC (Class Activation Map) モジュールを提案する。
第2に,長期化問題における表現学習における正規化分類器の利用について検討する。
論文 参考訳(メタデータ) (2021-08-29T05:45:03Z) - Improve the Interpretability of Attention: A Fast, Accurate, and
Interpretable High-Resolution Attention Model [6.906621279967867]
そこで本稿では,タスク関連情報を取り込むための,非線形代表非パラメトリックアテンション(BR-NPA)戦略を提案する。
提案したモデルは、分類が関与する様々な近代的な深層モデルに容易に適応できる。
また、通常のニューラルアテンションモジュールよりも正確で高速で、メモリフットプリントも小さい。
論文 参考訳(メタデータ) (2021-06-04T15:57:37Z) - SparseBERT: Rethinking the Importance Analysis in Self-attention [107.68072039537311]
トランスフォーマーベースのモデルは、その強力な能力のために自然言語処理(NLP)タスクに人気がある。
事前学習モデルの注意マップの可視化は,自己着脱機構を理解するための直接的な方法の一つである。
本研究では,sparsebert設計の指導にも適用可能な微分可能アテンションマスク(dam)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-25T14:13:44Z) - Bayesian Attention Modules [65.52970388117923]
実装や最適化が容易な,スケーラブルな注目バージョンを提案する。
本実験は,提案手法が対応するベースラインに対して一貫した改善をもたらすことを示す。
論文 参考訳(メタデータ) (2020-10-20T20:30:55Z) - LOGAN: Local Group Bias Detection by Clustering [86.38331353310114]
コーパスレベルでバイアスを評価することは、モデルにバイアスがどのように埋め込まれているかを理解するのに十分ではない、と我々は主張する。
クラスタリングに基づく新しいバイアス検出手法であるLOGANを提案する。
毒性分類および対象分類タスクの実験は、LOGANが局所領域のバイアスを特定することを示している。
論文 参考訳(メタデータ) (2020-10-06T16:42:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。