Attention-gating for improved radio galaxy classification
- URL: http://arxiv.org/abs/2012.01248v2
- Date: Mon, 1 Feb 2021 13:09:41 GMT
- Title: Attention-gating for improved radio galaxy classification
- Authors: Micah Bowles, Anna M. M. Scaife, Fiona Porter, Hongming Tang, David J.
Bastien
- Abstract summary: We introduce attention as a state of the art mechanism for classification of radio galaxies using convolutional neural networks.
We show how the selection of normalisation and aggregation methods used in attention-gating can affect the output of individual models.
The resulting attention maps can be used to interpret the classification choices made by the model.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work we introduce attention as a state of the art mechanism for
classification of radio galaxies using convolutional neural networks. We
present an attention-based model that performs on par with previous classifiers
while using more than 50% fewer parameters than the next smallest classic CNN
application in this field. We demonstrate quantitatively how the selection of
normalisation and aggregation methods used in attention-gating can affect the
output of individual models, and show that the resulting attention maps can be
used to interpret the classification choices made by the model. We observe that
the salient regions identified by the our model align well with the regions an
expert human classifier would attend to make equivalent classifications. We
show that while the selection of normalisation and aggregation may only
minimally affect the performance of individual models, it can significantly
affect the interpretability of the respective attention maps and by selecting a
model which aligns well with how astronomers classify radio sources by eye, a
user can employ the model in a more effective manner.
Related papers
- Diffusion Models Beat GANs on Image Classification [37.70821298392606]
Diffusion models have risen to prominence as a state-of-the-art method for image generation, denoising, inpainting, super-resolution, manipulation, etc.
We present our findings that these embeddings are useful beyond the noise prediction task, as they contain discriminative information and can also be leveraged for classification.
We find that with careful feature selection and pooling, diffusion models outperform comparable generative-discriminative methods for classification tasks.
arXiv Detail & Related papers (2023-07-17T17:59:40Z) - Semantic Embedded Deep Neural Network: A Generic Approach to Boost
Multi-Label Image Classification Performance [10.257208600853199]
We introduce a generic semantic-embedding deep neural network to apply the spatial awareness semantic feature.
We observed an Avg.relative improvement of 15.27% in terms of AUC score across all labels compared to the baseline approach.
arXiv Detail & Related papers (2023-05-09T07:44:52Z) - Domain Adaptive Nuclei Instance Segmentation and Classification via
Category-aware Feature Alignment and Pseudo-labelling [65.40672505658213]
We propose a novel deep neural network, namely Category-Aware feature alignment and Pseudo-Labelling Network (CAPL-Net) for UDA nuclei instance segmentation and classification.
Our approach outperforms state-of-the-art UDA methods with a remarkable margin.
arXiv Detail & Related papers (2022-07-04T07:05:06Z) - Weakly-supervised segmentation using inherently-explainable
classification models and their application to brain tumour classification [0.46873264197900916]
This paper introduces three inherently-explainable classifiers to tackle both of these problems as one.
The models were employed for the task of multi-class brain tumour classification using two different datasets.
The obtained accuracy on a subset of tumour-only images outperformed the state-of-the-art glioma tumour grading binary classifiers with the best model achieving 98.7% accuracy.
arXiv Detail & Related papers (2022-06-10T14:44:05Z) - A Gating Model for Bias Calibration in Generalized Zero-shot Learning [18.32369721322249]
Generalized zero-shot learning (GZSL) aims at training a model that can generalize to unseen class data by only using auxiliary information.
One of the main challenges in GZSL is a biased model prediction toward seen classes caused by overfitting on only available seen class data during training.
We propose a two-stream autoencoder-based gating model for GZSL.
arXiv Detail & Related papers (2022-03-08T16:41:06Z) - Modeling Category-Selective Cortical Regions with Topographic
Variational Autoencoders [72.15087604017441]
Category-selectivity describes the observation that certain spatially localized areas of the cerebral cortex tend to respond robustly and selectively to stimuli from specific limited categories.
We leverage the newly introduced Topographic Variational Autoencoder to model of the emergence of such localized category-selectivity in an unsupervised manner.
We show preliminary results suggesting that our model yields a nested spatial hierarchy of increasingly abstract categories, analogous to observations from the human ventral temporal cortex.
arXiv Detail & Related papers (2021-10-25T11:37:41Z) - Calibrating Class Activation Maps for Long-Tailed Visual Recognition [60.77124328049557]
We present two effective modifications of CNNs to improve network learning from long-tailed distribution.
First, we present a Class Activation Map (CAMC) module to improve the learning and prediction of network classifiers.
Second, we investigate the use of normalized classifiers for representation learning in long-tailed problems.
arXiv Detail & Related papers (2021-08-29T05:45:03Z) - Improve the Interpretability of Attention: A Fast, Accurate, and
Interpretable High-Resolution Attention Model [6.906621279967867]
We propose a novel Bilinear Representative Non-Parametric Attention (BR-NPA) strategy that captures the task-relevant human-interpretable information.
The proposed model can be easily adapted in a wide variety of modern deep models, where classification is involved.
It is also more accurate, faster, and with a smaller memory footprint than usual neural attention modules.
arXiv Detail & Related papers (2021-06-04T15:57:37Z) - SparseBERT: Rethinking the Importance Analysis in Self-attention [107.68072039537311]
Transformer-based models are popular for natural language processing (NLP) tasks due to its powerful capacity.
Attention map visualization of a pre-trained model is one direct method for understanding self-attention mechanism.
We propose a Differentiable Attention Mask (DAM) algorithm, which can be also applied in guidance of SparseBERT design.
arXiv Detail & Related papers (2021-02-25T14:13:44Z) - Bayesian Attention Modules [65.52970388117923]
We propose a scalable version of attention that is easy to implement and optimize.
Our experiments show the proposed method brings consistent improvements over the corresponding baselines.
arXiv Detail & Related papers (2020-10-20T20:30:55Z) - LOGAN: Local Group Bias Detection by Clustering [86.38331353310114]
We argue that evaluating bias at the corpus level is not enough for understanding how biases are embedded in a model.
We propose LOGAN, a new bias detection technique based on clustering.
Experiments on toxicity classification and object classification tasks show that LOGAN identifies bias in a local region.
arXiv Detail & Related papers (2020-10-06T16:42:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.