Domain Adaptive Nuclei Instance Segmentation and Classification via
Category-aware Feature Alignment and Pseudo-labelling
- URL: http://arxiv.org/abs/2207.01233v1
- Date: Mon, 4 Jul 2022 07:05:06 GMT
- Title: Domain Adaptive Nuclei Instance Segmentation and Classification via
Category-aware Feature Alignment and Pseudo-labelling
- Authors: Canran Li, Dongnan Liu, Haoran Li, Zheng Zhang, Guangming Lu, Xiaojun
Chang and Weidong Cai
- Abstract summary: We propose a novel deep neural network, namely Category-Aware feature alignment and Pseudo-Labelling Network (CAPL-Net) for UDA nuclei instance segmentation and classification.
Our approach outperforms state-of-the-art UDA methods with a remarkable margin.
- Score: 65.40672505658213
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Unsupervised domain adaptation (UDA) methods have been broadly utilized to
improve the models' adaptation ability in general computer vision. However,
different from the natural images, there exist huge semantic gaps for the
nuclei from different categories in histopathology images. It is still
under-explored how could we build generalized UDA models for precise
segmentation or classification of nuclei instances across different datasets.
In this work, we propose a novel deep neural network, namely Category-Aware
feature alignment and Pseudo-Labelling Network (CAPL-Net) for UDA nuclei
instance segmentation and classification. Specifically, we first propose a
category-level feature alignment module with dynamic learnable trade-off
weights. Second, we propose to facilitate the model performance on the target
data via self-supervised training with pseudo labels based on nuclei-level
prototype features. Comprehensive experiments on cross-domain nuclei instance
segmentation and classification tasks demonstrate that our approach outperforms
state-of-the-art UDA methods with a remarkable margin.
Related papers
- EIANet: A Novel Domain Adaptation Approach to Maximize Class Distinction with Neural Collapse Principles [15.19374752514876]
Source-free domain adaptation (SFDA) aims to transfer knowledge from a labelled source domain to an unlabelled target domain.
A major challenge in SFDA is deriving accurate categorical information for the target domain.
We introduce a novel ETF-Informed Attention Network (EIANet) to separate class prototypes.
arXiv Detail & Related papers (2024-07-23T05:31:05Z) - UniCell: Universal Cell Nucleus Classification via Prompt Learning [76.11864242047074]
We propose a universal cell nucleus classification framework (UniCell)
It employs a novel prompt learning mechanism to uniformly predict the corresponding categories of pathological images from different dataset domains.
In particular, our framework adopts an end-to-end architecture for nuclei detection and classification, and utilizes flexible prediction heads for adapting various datasets.
arXiv Detail & Related papers (2024-02-20T11:50:27Z) - BMD: A General Class-balanced Multicentric Dynamic Prototype Strategy
for Source-free Domain Adaptation [74.93176783541332]
Source-free Domain Adaptation (SFDA) aims to adapt a pre-trained source model to the unlabeled target domain without accessing the well-labeled source data.
To make up for the absence of source data, most existing methods introduced feature prototype based pseudo-labeling strategies.
We propose a general class-Balanced Multicentric Dynamic prototype strategy for the SFDA task.
arXiv Detail & Related papers (2022-04-06T13:23:02Z) - PointNu-Net: Keypoint-assisted Convolutional Neural Network for
Simultaneous Multi-tissue Histology Nuclei Segmentation and Classification [23.466331358975044]
We study and design a new method to simultaneously detect, segment, and classify nuclei from Haematoxylin and Eosin stained histopathology data.
We demonstrate the superior performance of our proposed approach for nuclei segmentation and classification across 19 different tissue types.
arXiv Detail & Related papers (2021-11-01T08:29:40Z) - Category Contrast for Unsupervised Domain Adaptation in Visual Tasks [92.9990560760593]
We propose a novel Category Contrast technique (CaCo) that introduces semantic priors on top of instance discrimination for visual UDA tasks.
CaCo is complementary to existing UDA methods and generalizable to other learning setups such as semi-supervised learning, unsupervised model adaptation, etc.
arXiv Detail & Related papers (2021-06-05T12:51:35Z) - Towards Uncovering the Intrinsic Data Structures for Unsupervised Domain
Adaptation using Structurally Regularized Deep Clustering [119.88565565454378]
Unsupervised domain adaptation (UDA) is to learn classification models that make predictions for unlabeled data on a target domain.
We propose a hybrid model of Structurally Regularized Deep Clustering, which integrates the regularized discriminative clustering of target data with a generative one.
Our proposed H-SRDC outperforms all the existing methods under both the inductive and transductive settings.
arXiv Detail & Related papers (2020-12-08T08:52:00Z) - Domain Adaptive Semantic Segmentation Using Weak Labels [115.16029641181669]
We propose a novel framework for domain adaptation in semantic segmentation with image-level weak labels in the target domain.
We develop a weak-label classification module to enforce the network to attend to certain categories.
In experiments, we show considerable improvements with respect to the existing state-of-the-arts in UDA and present a new benchmark in the WDA setting.
arXiv Detail & Related papers (2020-07-30T01:33:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.