Leveraging Uncertainty from Deep Learning for Trustworthy Materials
Discovery Workflows
- URL: http://arxiv.org/abs/2012.01478v2
- Date: Thu, 22 Apr 2021 23:29:30 GMT
- Title: Leveraging Uncertainty from Deep Learning for Trustworthy Materials
Discovery Workflows
- Authors: Jize Zhang, Bhavya Kailkhura, T. Yong-Jin Han
- Abstract summary: We show that by leveraging predictive uncertainty, a user can determine the required training data set size necessary to achieve a certain classification accuracy.
We also propose uncertainty guided decision referral to detect and refrain from making decisions on confusing samples.
- Score: 16.53952506314226
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we leverage predictive uncertainty of deep neural networks to
answer challenging questions material scientists usually encounter in machine
learning based materials applications workflows. First, we show that by
leveraging predictive uncertainty, a user can determine the required training
data set size necessary to achieve a certain classification accuracy. Next, we
propose uncertainty guided decision referral to detect and refrain from making
decisions on confusing samples. Finally, we show that predictive uncertainty
can also be used to detect out-of-distribution test samples. We find that this
scheme is accurate enough to detect a wide range of real-world shifts in data,
e.g., changes in the image acquisition conditions or changes in the synthesis
conditions. Using microstructure information from scanning electron microscope
(SEM) images as an example use case, we show that leveraging uncertainty-aware
deep learning can significantly improve the performance and dependability of
classification models.
Related papers
- Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
Uncertainty estimation is a key factor that makes deep learning reliable in practical applications.
We propose a novel method, Fisher Information-based Evidential Deep Learning ($mathcalI$-EDL)
In particular, we introduce Fisher Information Matrix (FIM) to measure the informativeness of evidence carried by each sample, according to which we can dynamically reweight the objective loss terms to make the network more focused on the representation learning of uncertain classes.
arXiv Detail & Related papers (2023-03-03T16:12:59Z) - Post-hoc Uncertainty Learning using a Dirichlet Meta-Model [28.522673618527417]
We propose a novel Bayesian meta-model to augment pre-trained models with better uncertainty quantification abilities.
Our proposed method requires no additional training data and is flexible enough to quantify different uncertainties.
We demonstrate our proposed meta-model approach's flexibility and superior empirical performance on these applications.
arXiv Detail & Related papers (2022-12-14T17:34:11Z) - A Review of Uncertainty Calibration in Pretrained Object Detectors [5.440028715314566]
We investigate the uncertainty calibration properties of different pretrained object detection architectures in a multi-class setting.
We propose a framework to ensure a fair, unbiased, and repeatable evaluation.
We deliver novel insights into why poor detector calibration emerges.
arXiv Detail & Related papers (2022-10-06T14:06:36Z) - Calibrating Ensembles for Scalable Uncertainty Quantification in Deep
Learning-based Medical Segmentation [0.42008820076301906]
Uncertainty quantification in automated image analysis is highly desired in many applications.
Current uncertainty quantification approaches do not scale well in high-dimensional real-world problems.
We propose a scalable and intuitive framework to calibrate ensembles of deep learning models to produce uncertainty quantification measurements.
arXiv Detail & Related papers (2022-09-20T09:09:48Z) - BayesCap: Bayesian Identity Cap for Calibrated Uncertainty in Frozen
Neural Networks [50.15201777970128]
We propose BayesCap that learns a Bayesian identity mapping for the frozen model, allowing uncertainty estimation.
BayesCap is a memory-efficient method that can be trained on a small fraction of the original dataset.
We show the efficacy of our method on a wide variety of tasks with a diverse set of architectures.
arXiv Detail & Related papers (2022-07-14T12:50:09Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
Modern deep neural networks can easily overfit to biased training data containing corrupted labels or class imbalance.
Sample re-weighting methods are popularly used to alleviate this data bias issue.
We propose a meta-model capable of adaptively learning an explicit weighting scheme directly from data.
arXiv Detail & Related papers (2022-02-11T13:49:51Z) - CertainNet: Sampling-free Uncertainty Estimation for Object Detection [65.28989536741658]
Estimating the uncertainty of a neural network plays a fundamental role in safety-critical settings.
In this work, we propose a novel sampling-free uncertainty estimation method for object detection.
We call it CertainNet, and it is the first to provide separate uncertainties for each output signal: objectness, class, location and size.
arXiv Detail & Related papers (2021-10-04T17:59:31Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
We show that current out-of-distribution (OOD) detection algorithms for neural networks produce unsatisfactory results in a variety of OOD detection scenarios.
This paper studies how such "hard" OOD scenarios can benefit from adjusting the detection method after observing a batch of the test data.
We propose a novel method that uses an artificial labeling scheme for the test data and regularization to obtain ensembles of models that produce contradictory predictions only on the OOD samples in a test batch.
arXiv Detail & Related papers (2020-12-10T16:55:13Z) - Ask-n-Learn: Active Learning via Reliable Gradient Representations for
Image Classification [29.43017692274488]
Deep predictive models rely on human supervision in the form of labeled training data.
We propose Ask-n-Learn, an active learning approach based on gradient embeddings obtained using the pesudo-labels estimated in each of the algorithm.
arXiv Detail & Related papers (2020-09-30T05:19:56Z) - On the Robustness of Active Learning [0.7340017786387767]
Active Learning is concerned with how to identify the most useful samples for a Machine Learning algorithm to be trained with.
We find that it is often applied with not enough care and domain knowledge.
We propose the new "Sum of Squared Logits" method based on the Simpson diversity index and investigate the effect of using the confusion matrix for balancing in sample selection.
arXiv Detail & Related papers (2020-06-18T09:07:23Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.