Post-hoc Uncertainty Learning using a Dirichlet Meta-Model
- URL: http://arxiv.org/abs/2212.07359v1
- Date: Wed, 14 Dec 2022 17:34:11 GMT
- Title: Post-hoc Uncertainty Learning using a Dirichlet Meta-Model
- Authors: Maohao Shen, Yuheng Bu, Prasanna Sattigeri, Soumya Ghosh, Subhro Das,
Gregory Wornell
- Abstract summary: We propose a novel Bayesian meta-model to augment pre-trained models with better uncertainty quantification abilities.
Our proposed method requires no additional training data and is flexible enough to quantify different uncertainties.
We demonstrate our proposed meta-model approach's flexibility and superior empirical performance on these applications.
- Score: 28.522673618527417
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is known that neural networks have the problem of being over-confident
when directly using the output label distribution to generate uncertainty
measures. Existing methods mainly resolve this issue by retraining the entire
model to impose the uncertainty quantification capability so that the learned
model can achieve desired performance in accuracy and uncertainty prediction
simultaneously. However, training the model from scratch is computationally
expensive and may not be feasible in many situations. In this work, we consider
a more practical post-hoc uncertainty learning setting, where a well-trained
base model is given, and we focus on the uncertainty quantification task at the
second stage of training. We propose a novel Bayesian meta-model to augment
pre-trained models with better uncertainty quantification abilities, which is
effective and computationally efficient. Our proposed method requires no
additional training data and is flexible enough to quantify different
uncertainties and easily adapt to different application settings, including
out-of-domain data detection, misclassification detection, and trustworthy
transfer learning. We demonstrate our proposed meta-model approach's
flexibility and superior empirical performance on these applications over
multiple representative image classification benchmarks.
Related papers
- Error-Driven Uncertainty Aware Training [7.702016079410588]
Error-Driven Uncertainty Aware Training aims to enhance the ability of neural classifiers to estimate their uncertainty correctly.
The EUAT approach operates during the model's training phase by selectively employing two loss functions depending on whether the training examples are correctly or incorrectly predicted.
We evaluate EUAT using diverse neural models and datasets in the image recognition domains considering both non-adversarial and adversarial settings.
arXiv Detail & Related papers (2024-05-02T11:48:14Z) - Towards Certified Probabilistic Robustness with High Accuracy [3.957941698534126]
Adrial examples pose a security threat to many critical systems built on neural networks.
How to build certifiably robust yet accurate neural network models remains an open problem.
We propose a novel approach that aims to achieve both high accuracy and certified probabilistic robustness.
arXiv Detail & Related papers (2023-09-02T09:39:47Z) - Modeling Uncertain Feature Representation for Domain Generalization [49.129544670700525]
We show that our method consistently improves the network generalization ability on multiple vision tasks.
Our methods are simple yet effective and can be readily integrated into networks without additional trainable parameters or loss constraints.
arXiv Detail & Related papers (2023-01-16T14:25:02Z) - Calibrating Ensembles for Scalable Uncertainty Quantification in Deep
Learning-based Medical Segmentation [0.42008820076301906]
Uncertainty quantification in automated image analysis is highly desired in many applications.
Current uncertainty quantification approaches do not scale well in high-dimensional real-world problems.
We propose a scalable and intuitive framework to calibrate ensembles of deep learning models to produce uncertainty quantification measurements.
arXiv Detail & Related papers (2022-09-20T09:09:48Z) - BayesCap: Bayesian Identity Cap for Calibrated Uncertainty in Frozen
Neural Networks [50.15201777970128]
We propose BayesCap that learns a Bayesian identity mapping for the frozen model, allowing uncertainty estimation.
BayesCap is a memory-efficient method that can be trained on a small fraction of the original dataset.
We show the efficacy of our method on a wide variety of tasks with a diverse set of architectures.
arXiv Detail & Related papers (2022-07-14T12:50:09Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
Marginal-likelihood based model-selection is rarely used in deep learning due to estimation difficulties.
Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable.
arXiv Detail & Related papers (2021-04-11T09:50:24Z) - Uncertainty Estimation and Calibration with Finite-State Probabilistic
RNNs [29.84563789289183]
Uncertainty quantification is crucial for building reliable and trustable machine learning systems.
We propose to estimate uncertainty in recurrent neural networks (RNNs) via discrete state transitions over recurrent timesteps.
The uncertainty of the model can be quantified by running a prediction several times, each time sampling from the recurrent state transition distribution.
arXiv Detail & Related papers (2020-11-24T10:35:28Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.