論文の概要: Differential Morphed Face Detection Using Deep Siamese Networks
- arxiv url: http://arxiv.org/abs/2012.01541v2
- Date: Sat, 5 Dec 2020 01:51:50 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-30 00:11:29.969101
- Title: Differential Morphed Face Detection Using Deep Siamese Networks
- Title(参考訳): ディープシームズネットワークを用いた差動型顔検出
- Authors: Sobhan Soleymani, Baaria Chaudhary, Ali Dabouei, Jeremy Dawson, Nasser
M. Nasrabadi
- Abstract要約: 本稿では,ディープ・シームズ・ネットワークを用いた新しいディファレンシャル・モーフィック・アタック検出フレームワークを提案する。
我々の知る限りでは、これはシームズネットワークアーキテクチャをモルヒネ攻撃検出に利用した最初の研究である。
- 参考スコア(独自算出の注目度): 23.632874831725665
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although biometric facial recognition systems are fast becoming part of
security applications, these systems are still vulnerable to morphing attacks,
in which a facial reference image can be verified as two or more separate
identities. In border control scenarios, a successful morphing attack allows
two or more people to use the same passport to cross borders. In this paper, we
propose a novel differential morph attack detection framework using a deep
Siamese network. To the best of our knowledge, this is the first research work
that makes use of a Siamese network architecture for morph attack detection. We
compare our model with other classical and deep learning models using two
distinct morph datasets, VISAPP17 and MorGAN. We explore the embedding space
generated by the contrastive loss using three decision making frameworks using
Euclidean distance, feature difference and a support vector machine classifier,
and feature concatenation and a support vector machine classifier.
- Abstract(参考訳): 生体認証システムは、急速にセキュリティアプリケーションの一部になりつつあるが、これらのシステムは、顔参照画像が2つ以上の別々のアイデンティティとして検証されるモーフィング攻撃に対して脆弱である。
国境管理のシナリオでは、2人以上の人が同じパスポートを使って国境を横切ることができる。
本稿では,deep siameseネットワークを用いた新しい差分モーフィックアタック検出フレームワークを提案する。
私たちの知る限りでは、これはモーフィックアタック検出にシャムネットワークアーキテクチャを使用する最初の研究作品です。
我々のモデルは、VISAPP17とMorGANの2つの異なる形態データセットを用いて、他の古典的および深層学習モデルと比較する。
本研究では, ユークリッド距離, 特徴差, 支持ベクトルマシン分類器, 特徴連結と支持ベクトルマシン分類器を用いた3つの意思決定フレームワークを用いて, 比較損失によって生じる埋め込み空間を探索する。
関連論文リスト
- LADIMO: Face Morph Generation through Biometric Template Inversion with Latent Diffusion [5.602947425285195]
顔改ざん攻撃は、顔認識システムに深刻なセキュリティ脅威をもたらす。
本稿では,2つの顔認識の埋め込みにおいて,表現レベルの顔形態形成手法であるLADIMOを提案する。
顔形態変種は個々の攻撃成功率を持ち、形態的攻撃ポテンシャルを最大化できることを示す。
論文 参考訳(メタデータ) (2024-10-10T14:41:37Z) - UniForensics: Face Forgery Detection via General Facial Representation [60.5421627990707]
高レベルの意味的特徴は摂動の影響を受けにくく、フォージェリー固有の人工物に限らないため、より強い一般化がある。
我々は、トランスフォーマーベースのビデオネットワークを活用する新しいディープフェイク検出フレームワークUniForensicsを導入し、顔の豊かな表現のためのメタファンクショナルな顔分類を行う。
論文 参考訳(メタデータ) (2024-07-26T20:51:54Z) - Approximating Optimal Morphing Attacks using Template Inversion [4.0361765428523135]
我々は,理論的最適形態埋め込みの反転に基づく新しいタイプのディープ・モーフィング・アタックを開発した。
我々は複数の情報源からモーフィング攻撃を生成し、複数の顔認識ネットワークに対する攻撃の有効性について検討する。
論文 参考訳(メタデータ) (2024-02-01T15:51:46Z) - Unified Physical-Digital Face Attack Detection [66.14645299430157]
顔認識(FR)システムは物理的(印刷写真)とデジタル(ディープフェイク)攻撃に悩まされることがある。
以前の関連する作業では、両方の状況が同時に考慮されることはめったにありません。
視覚言語モデル(VLM)に基づく一元攻撃検出フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-31T09:38:44Z) - COMICS: End-to-end Bi-grained Contrastive Learning for Multi-face Forgery Detection [56.7599217711363]
顔偽造認識法は一度に1つの顔しか処理できない。
ほとんどの顔偽造認識法は一度に1つの顔しか処理できない。
マルチフェイスフォージェリ検出のためのエンドツーエンドフレームワークであるCOMICSを提案する。
論文 参考訳(メタデータ) (2023-08-03T03:37:13Z) - Towards minimizing efforts for Morphing Attacks -- Deep embeddings for morphing pair selection and improved Morphing Attack Detection [4.349201388722244]
顔埋め込みは、大規模なモルフィング攻撃生成のための画像の選択と、潜在的なモルフィング攻撃を検出する2つの目的がある。
顔の埋め込み類似性に基づいて個人をペアリングする事前選択アルゴリズムを用いる。
モーフィング・アタックを検出する能力の観点から、2つの最先端の顔認識システムからの埋め込みを比較した。
論文 参考訳(メタデータ) (2023-05-29T17:00:40Z) - MorphGANFormer: Transformer-based Face Morphing and De-Morphing [55.211984079735196]
顔変形に対するスタイルGANベースのアプローチが主要な技術である。
本稿では,顔の変形に対する変換器ベースの代替手段を提案し,その利点をStyleGANベースの方法と比較した。
論文 参考訳(メタデータ) (2023-02-18T19:09:11Z) - Are GAN-based Morphs Threatening Face Recognition? [3.0921354926071274]
本稿では,4種類のモーフィング攻撃のためのデータセットと対応するコードを提供することにより,このギャップを埋める。
また、4つの最先端の顔認識システムの脆弱性を評価するための広範囲な実験を行った。
論文 参考訳(メタデータ) (2022-05-05T08:19:47Z) - Vulnerability Analysis of Face Morphing Attacks from Landmarks and
Generative Adversarial Networks [0.8602553195689513]
本稿は,OpenCV, FaceMorpher, WebMorph, および生成対向ネットワーク(StyleGAN)に基づく4種類のモーフィング攻撃を用いた新しいデータセットを提供する。
また,facenet,vgg-face,arcfaceなど,最先端の顔認識システムの脆弱性を評価するための広範な実験を行った。
論文 参考訳(メタデータ) (2020-12-09T22:10:17Z) - MixNet for Generalized Face Presentation Attack Detection [63.35297510471997]
我々は、プレゼンテーションアタックを検出するための、TextitMixNetと呼ばれるディープラーニングベースのネットワークを提案している。
提案アルゴリズムは最先端の畳み込みニューラルネットワークアーキテクチャを利用して,各攻撃カテゴリの特徴マッピングを学習する。
論文 参考訳(メタデータ) (2020-10-25T23:01:13Z) - Black-Box Face Recovery from Identity Features [61.950765357647605]
我々はアルゴリズムをテストするために最先端の顔認識システム(ArcFace)を攻撃した。
我々のアルゴリズムは、最先端のソリューションに比べて、はるかに少ないクエリを必要とする。
論文 参考訳(メタデータ) (2020-07-27T15:25:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。