Structure of wavefunction for interacting bosons in mean-field with
random $k$-body interactions
- URL: http://arxiv.org/abs/2012.01610v2
- Date: Sat, 13 Mar 2021 10:22:50 GMT
- Title: Structure of wavefunction for interacting bosons in mean-field with
random $k$-body interactions
- Authors: Priyanka Rao and N. D. Chavda
- Abstract summary: Wavefunction structure is analyzed for dense interacting many-boson systems using Hamiltonian $H$.
In the first analysis, a complete analytical description of the variance of the strength function as a function of $lambda$ and $k$ is derived.
In the second analysis, this interpolating form of the strength function is utilized to describe the fidelity decay after $k$-body interaction quench.
- Score: 2.28438857884398
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Wavefunction structure is analyzed for dense interacting many-boson systems
using Hamiltonian $H$, which is a sum of one-body $h(1)$ and an embedded GOE of
$k$-body interaction $V(k)$ with strength $\lambda$. In the first analysis, a
complete analytical description of the variance of the strength function as a
function of $\lambda$ and $k$ is derived and the marker $\lambda_t$ defining
thermalization region is obtained. In the strong coupling limit ($\lambda >
\lambda_t$), the conditional $q$-normal density describes Gaussian to
semi-circle transition in strength functions as body rank $k$ of the
interaction increases. In the second analysis, this interpolating form of the
strength function is utilized to describe the fidelity decay after $k$-body
interaction quench and also to obtain the smooth form for the number of
principal components, a measure of chaos in finite interacting many-particle
systems. The smooth form very well describes embedded ensemble results for all
$k$ values.
Related papers
- Path integral for the quartic oscillator: An accurate analytic formula for the partition function [0.0]
The exact partition function is approximated by the partition function of a harmonic oscillator with an effective frequency depending both on the temperature and coupling constant $g$.
Quite remarkably, the formula reproduces qualitatively and quantitatively the key features of the exact partition function.
arXiv Detail & Related papers (2023-12-15T15:05:03Z) - Quantum connection, charges and virtual particles [65.268245109828]
A quantum bundle $L_hbar$ is endowed with a connection $A_hbar$ and its sections are standard wave functions $psi$ obeying the Schr"odinger equation.
We will lift the bundles $L_Cpm$ and connection $A_hbar$ on them to the relativistic phase space $T*R3,1$ and couple them to the Dirac spinor bundle describing both particles and antiparticles.
arXiv Detail & Related papers (2023-10-10T10:27:09Z) - On parametric resonance in the laser action [91.3755431537592]
We consider the selfconsistent semiclassical Maxwell--Schr"odinger system for the solid state laser.
We introduce the corresponding Poincar'e map $P$ and consider the differential $DP(Y0)$ at suitable stationary state $Y0$.
arXiv Detail & Related papers (2022-08-22T09:43:57Z) - Full counting statistics of interacting lattice gases after an
expansion: The role of the condensate depletion in the many-body coherence [55.41644538483948]
We study the full counting statistics (FCS) of quantum gases in samples of thousands of interacting bosons.
FCS reveals the many-body coherence from which we characterize iconic states of interacting lattice bosons.
arXiv Detail & Related papers (2022-07-28T13:21:57Z) - Thermalization in many-fermion quantum systems with one- plus random
$k$-body interactions [2.28438857884398]
We study thermalization in finite many-fermion systems with random $k$-body interactions in presence of a mean-field.
For higher body rank of interaction $k$, system thermalizes faster.
arXiv Detail & Related papers (2022-06-21T15:24:40Z) - Helium-like ions in $d$-dimensions: analyticity and generalized ground
state Majorana solutions [0.0]
Non-relativistic Helium-like ions $(-e,-e,Ze)$ with static nucleus in a $d-$dimensional space are considered.
A 2-parametric correlated Hylleraas-type trial function is used to calculate the ground state energy of the system.
arXiv Detail & Related papers (2021-08-21T04:51:41Z) - Neural networks with superexpressive activations and integer weights [91.3755431537592]
An example of an activation function $sigma$ is given such that networks with activations $sigma, lfloorcdotrfloor$, integer weights and a fixed architecture is given.
The range of integer weights required for $varepsilon$-approximation of H"older continuous functions is derived.
arXiv Detail & Related papers (2021-05-20T17:29:08Z) - Shannon entropy in confined He-like ions within a density functional
formalism [0.0]
Shannon entropy in position ($S_rvec$) and momentum ($S_pvec$) spaces, along with their sum ($S_t$) are presented.
The radial Kohn-Sham equation is solved using an optimal spatial discretization scheme via the generalized pseudospectral (GPS) method.
arXiv Detail & Related papers (2021-02-26T16:29:07Z) - Anharmonic oscillator: a solution [77.34726150561087]
The dynamics in $x$-space and in $(gx)-space corresponds to the same energy spectrum with effective coupling constant $hbar g2$.
A 2-classical generalization leads to a uniform approximation of the wavefunction in $x$-space with unprecedented accuracy.
arXiv Detail & Related papers (2020-11-29T22:13:08Z) - Wavefunction structure in quantum many-fermion systems with $k$-body
interactions: conditional $q$-normal form of strength functions [0.40357531559576965]
For finite quantum many-particle systems modeled with say $m$ fermions in $N$ single particle states, the wavefunction structure is studied using random matrix theory.
It is shown that the first four moments of $F_kappa(E)$ are essentially same as that of the conditional $q$-normal distribution.
arXiv Detail & Related papers (2020-11-09T11:53:39Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.