ResPerfNet: Deep Residual Learning for Regressional Performance Modeling
of Deep Neural Networks
- URL: http://arxiv.org/abs/2012.01671v1
- Date: Thu, 3 Dec 2020 03:02:42 GMT
- Title: ResPerfNet: Deep Residual Learning for Regressional Performance Modeling
of Deep Neural Networks
- Authors: Chuan-Chi Wang, Ying-Chiao Liao, Chia-Heng Tu, Ming-Chang Kao, Wen-Yew
Liang, Shih-Hao Hung
- Abstract summary: We propose a deep learning-based method, ResPerfNet, which trains a residual neural network with representative datasets obtained on the target platform to predict the performance for a deep neural network.
Our experimental results show that ResPerfNet can accurately predict the execution time of individual neural network layers and full network models on a variety of platforms.
- Score: 0.16311150636417257
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancements of computing technology facilitate the development of
diverse deep learning applications. Unfortunately, the efficiency of parallel
computing infrastructures varies widely with neural network models, which
hinders the exploration of the design space to find high-performance neural
network architectures on specific computing platforms for a given application.
To address such a challenge, we propose a deep learning-based method,
ResPerfNet, which trains a residual neural network with representative datasets
obtained on the target platform to predict the performance for a deep neural
network. Our experimental results show that ResPerfNet can accurately predict
the execution time of individual neural network layers and full network models
on a variety of platforms. In particular, ResPerfNet achieves 8.4% of mean
absolute percentage error for LeNet, AlexNet and VGG16 on the NVIDIA GTX
1080Ti, which is substantially lower than the previously published works.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Designing deep neural networks for driver intention recognition [40.87622566719826]
This paper applies neural architecture search to investigate the effects of the deep neural network architecture on a real-world safety critical application.
A set of eight search strategies are evaluated for two driver intention recognition datasets.
arXiv Detail & Related papers (2024-02-07T12:54:15Z) - Neural Capacitance: A New Perspective of Neural Network Selection via
Edge Dynamics [85.31710759801705]
Current practice requires expensive computational costs in model training for performance prediction.
We propose a novel framework for neural network selection by analyzing the governing dynamics over synaptic connections (edges) during training.
Our framework is built on the fact that back-propagation during neural network training is equivalent to the dynamical evolution of synaptic connections.
arXiv Detail & Related papers (2022-01-11T20:53:15Z) - CondenseNeXt: An Ultra-Efficient Deep Neural Network for Embedded
Systems [0.0]
A Convolutional Neural Network (CNN) is a class of Deep Neural Network (DNN) widely used in the analysis of visual images captured by an image sensor.
In this paper, we propose a neoteric variant of deep convolutional neural network architecture to ameliorate the performance of existing CNN architectures for real-time inference on embedded systems.
arXiv Detail & Related papers (2021-12-01T18:20:52Z) - Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity
on Pruned Neural Networks [79.74580058178594]
We analyze the performance of training a pruned neural network by analyzing the geometric structure of the objective function.
We show that the convex region near a desirable model with guaranteed generalization enlarges as the neural network model is pruned.
arXiv Detail & Related papers (2021-10-12T01:11:07Z) - Efficient Neural Architecture Search with Performance Prediction [0.0]
We use a neural architecture search to find the best network architecture for the task at hand.
Existing NAS algorithms generally evaluate the fitness of a new architecture by fully training from scratch.
An end-to-end offline performance predictor is proposed to accelerate the evaluation of sampled architectures.
arXiv Detail & Related papers (2021-08-04T05:44:16Z) - Toward Accurate Platform-Aware Performance Modeling for Deep Neural
Networks [0.17499351967216337]
We provide a machine learning-based method, PerfNetV2, which improves the accuracy of our previous work for modeling the neural network performance on a variety of GPU accelerators.
Given an application, the proposed method can be used to predict the inference time and training time of the convolutional neural networks used in the application.
Our case studies show that PerfNetV2 yields a mean absolute percentage error within 13.1% on LeNet, AlexNet, and VGG16 on NVIDIA GTX-1080Ti, while the error rate on a previous work published in ICBD 2018 could be as large as 200%.
arXiv Detail & Related papers (2020-12-01T01:42:23Z) - Optimizing Memory Placement using Evolutionary Graph Reinforcement
Learning [56.83172249278467]
We introduce Evolutionary Graph Reinforcement Learning (EGRL), a method designed for large search spaces.
We train and validate our approach directly on the Intel NNP-I chip for inference.
We additionally achieve 28-78% speed-up compared to the native NNP-I compiler on all three workloads.
arXiv Detail & Related papers (2020-07-14T18:50:12Z) - FBNetV3: Joint Architecture-Recipe Search using Predictor Pretraining [65.39532971991778]
We present an accuracy predictor that scores architecture and training recipes jointly, guiding both sample selection and ranking.
We run fast evolutionary searches in just CPU minutes to generate architecture-recipe pairs for a variety of resource constraints.
FBNetV3 makes up a family of state-of-the-art compact neural networks that outperform both automatically and manually-designed competitors.
arXiv Detail & Related papers (2020-06-03T05:20:21Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
Quantization neural networks (QNNs) are very attractive to the industry because their extremely cheap calculation and storage overhead, but their performance is still worse than that of networks with full-precision parameters.
Most of existing methods aim to enhance performance of QNNs especially binary neural networks by exploiting more effective training techniques.
We address this problem by projecting features in original full-precision networks to high-dimensional quantization features.
arXiv Detail & Related papers (2020-02-03T04:11:13Z) - Inferring Convolutional Neural Networks' accuracies from their
architectural characterizations [0.0]
We study the relationships between a CNN's architecture and its performance.
We show that the attributes can be predictive of the networks' performance in two specific computer vision-based physics problems.
We use machine learning models to predict whether a network can perform better than a certain threshold accuracy before training.
arXiv Detail & Related papers (2020-01-07T16:41:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.