論文の概要: D-Unet: A Dual-encoder U-Net for Image Splicing Forgery Detection and
Localization
- arxiv url: http://arxiv.org/abs/2012.01821v1
- Date: Thu, 3 Dec 2020 10:54:02 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-23 14:55:32.581517
- Title: D-Unet: A Dual-encoder U-Net for Image Splicing Forgery Detection and
Localization
- Title(参考訳): D-Unet:イメージスプライシングフォージェリ検出とローカライゼーションのためのデュアルエンコーダU-Net
- Authors: Xiuli Bi, Yanbin Liu, Bin Xiao, Weisheng Li, Chi-Man Pun, Guoyin Wang,
and Xinbo Gao
- Abstract要約: 画像スプライシング偽造検出は、画像指紋によって改ざんされた領域と非改ざんされた領域を区別するグローバルバイナリ分類タスクである。
画像スプライシングフォージェリ検出のためのデュアルエンコーダU-Net(D-Unet)という,固定されていないエンコーダと固定エンコーダを用いた新しいネットワークを提案する。
D-Unetと最先端技術の比較実験において、D-Unetは画像レベルおよび画素レベルの検出において他の手法よりも優れていた。
- 参考スコア(独自算出の注目度): 108.8592577019391
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, many detection methods based on convolutional neural networks
(CNNs) have been proposed for image splicing forgery detection. Most of these
detection methods focus on the local patches or local objects. In fact, image
splicing forgery detection is a global binary classification task that
distinguishes the tampered and non-tampered regions by image fingerprints.
However, some specific image contents are hardly retained by CNN-based
detection networks, but if included, would improve the detection accuracy of
the networks. To resolve these issues, we propose a novel network called
dual-encoder U-Net (D-Unet) for image splicing forgery detection, which employs
an unfixed encoder and a fixed encoder. The unfixed encoder autonomously learns
the image fingerprints that differentiate between the tampered and non-tampered
regions, whereas the fixed encoder intentionally provides the direction
information that assists the learning and detection of the network. This
dual-encoder is followed by a spatial pyramid global-feature extraction module
that expands the global insight of D-Unet for classifying the tampered and
non-tampered regions more accurately. In an experimental comparison study of
D-Unet and state-of-the-art methods, D-Unet outperformed the other methods in
image-level and pixel-level detection, without requiring pre-training or
training on a large number of forgery images. Moreover, it was stably robust to
different attacks.
- Abstract(参考訳): 近年,画像スプライシング偽造検出のための畳み込みニューラルネットワーク(cnns)に基づく検出手法が多数提案されている。
これらの検出手法のほとんどは、ローカルパッチやローカルオブジェクトにフォーカスする。
実際、画像スプライシング偽造検出は、画像指紋によって改ざんされた領域と非スタンプ領域を区別するグローバルバイナリ分類タスクである。
しかし、特定の画像内容はCNNベースの検出ネットワークではほとんど保持されないが、含めればネットワークの検出精度が向上する。
そこで本稿では,未固定エンコーダと固定エンコーダを用いた画像スプライシング偽造検出のための,デュアルエンコーダu-net (d-unet) と呼ばれる新しいネットワークを提案する。
非固定エンコーダは、改ざんされた領域と非タンパリング領域とを区別する画像指紋を自律的に学習するが、固定エンコーダは故意にネットワークの学習および検出を支援する方向情報を提供する。
このデュアルエンコーダは、より正確に改ざんされた領域と非改ざん領域を分類するためのD-Unetのグローバルな洞察を拡大する空間ピラミッドグローバルフィーチャー抽出モジュールが続く。
D-Unetと最先端の手法の実験的比較研究において、D-Unetは多数の偽画像の事前訓練や訓練を必要とせず、画像レベルおよび画素レベルの検出において他の手法よりも優れていた。
さらに、異なる攻撃に対して安定的に頑健であった。
関連論文リスト
- DA-HFNet: Progressive Fine-Grained Forgery Image Detection and Localization Based on Dual Attention [12.36906630199689]
DA-HFNet鍛造画像データセットをテキストまたは画像支援GANおよび拡散モデルで作成する。
我々のゴールは、階層的なプログレッシブネットワークを使用して、異なるスケールの偽造物を検出およびローカライゼーションするために捕獲することである。
論文 参考訳(メタデータ) (2024-06-03T16:13:33Z) - UP-CrackNet: Unsupervised Pixel-Wise Road Crack Detection via Adversarial Image Restoration [23.71017765426465]
本稿では,UP-CrackNet と呼ばれる非教師付き画素単位の道路亀裂検出ネットワークを提案する。
提案手法はまずマルチスケールの正方形マスクを生成し,特定領域を除去して無害道路画像をランダムに選別する。
生成的敵ネットワークは、周辺未破壊領域から学習した意味的文脈を活用することにより、腐敗した領域を復元するように訓練される。
論文 参考訳(メタデータ) (2024-01-28T12:51:01Z) - ReContrast: Domain-Specific Anomaly Detection via Contrastive
Reconstruction [29.370142078092375]
殆どの高度な教師なし異常検出(UAD)手法は、大規模データセットで事前訓練された冷凍エンコーダネットワークの特徴表現をモデル化することに依存している。
本稿では,事前学習した画像領域に対するバイアスを低減するために,ネットワーク全体を最適化する新しい疫学的UAD手法であるReContrastを提案する。
2つの一般的な産業欠陥検出ベンチマークと3つの医用画像UADタスクで実験を行い、現在の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-05T05:21:15Z) - Unsupervised Industrial Anomaly Detection via Pattern Generative and Contrastive Networks [6.393288885927437]
本稿では,視覚変換器を用いた教師なし異常検出ネットワークを提案する。
階層的なタスク学習と人間の経験を利用して、その解釈可能性を高めます。
従来の最先端手法を超越した99.8%のAUCを実現した。
論文 参考訳(メタデータ) (2022-07-20T10:09:53Z) - Revisiting Consistency Regularization for Semi-supervised Change
Detection in Remote Sensing Images [60.89777029184023]
教師付きクロスエントロピー(CE)損失に加えて、教師なしCD損失を定式化する半教師付きCDモデルを提案する。
2つの公開CDデータセットを用いて実験を行った結果,提案手法は教師付きCDの性能に近づきやすいことがわかった。
論文 参考訳(メタデータ) (2022-04-18T17:59:01Z) - Learning Hierarchical Graph Representation for Image Manipulation
Detection [50.04902159383709]
画像操作検出の目的は、画像内の操作された領域を特定し、特定することである。
最近のアプローチでは、画像に残っている改ざんするアーティファクトをキャプチャするために、洗練された畳み込みニューラルネットワーク(CNN)が採用されている。
本稿では2つの並列分岐からなる階層型グラフ畳み込みネットワーク(HGCN-Net)を提案する。
論文 参考訳(メタデータ) (2022-01-15T01:54:25Z) - Double-Dot Network for Antipodal Grasp Detection [20.21384585441404]
本稿では,Double-Dot Network (DD-Net) という,対足足歩行検出のための新しい深層学習手法を提案する。
これは、経験的にプリセットされたアンカーに依存しない最近のアンカーフリーなオブジェクト検出フレームワークに従っている。
このような指先をローカライズするために効果的なCNNアーキテクチャを導入し、改良のための補助センターの助けを借りて、把握候補を正確かつ堅牢に推測する。
論文 参考訳(メタデータ) (2021-08-03T14:21:17Z) - Suppress and Balance: A Simple Gated Network for Salient Object
Detection [89.88222217065858]
両問題を同時に解くための単純なゲートネットワーク(GateNet)を提案する。
多レベルゲートユニットの助けを借りて、エンコーダからの貴重なコンテキスト情報をデコーダに最適に送信することができる。
さらに,提案したFold-ASPP操作(Fold-ASPP)に基づくアトラス空間ピラミッドプーリングを用いて,様々なスケールのサリアンオブジェクトを正確に位置決めする。
論文 参考訳(メタデータ) (2020-07-16T02:00:53Z) - Ventral-Dorsal Neural Networks: Object Detection via Selective Attention [51.79577908317031]
我々はVDNet(Ventral-Dorsal Networks)と呼ばれる新しいフレームワークを提案する。
人間の視覚システムの構造にインスパイアされた我々は「Ventral Network」と「Dorsal Network」の統合を提案する。
実験の結果,提案手法は最先端の物体検出手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-05-15T23:57:36Z) - BiDet: An Efficient Binarized Object Detector [96.19708396510894]
本稿では,効率的な物体検出のためのバイナライズニューラルネットワークのBiDetを提案する。
我々のBiDetは、冗長除去による物体検出にバイナリニューラルネットワークの表現能力を完全に活用している。
我々の手法は、最先端のバイナリニューラルネットワークを大きなマージンで上回る。
論文 参考訳(メタデータ) (2020-03-09T08:16:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。