Exploring the many-body dynamics near a conical intersection with
trapped Rydberg ions
- URL: http://arxiv.org/abs/2012.01834v2
- Date: Fri, 11 Jun 2021 15:26:42 GMT
- Title: Exploring the many-body dynamics near a conical intersection with
trapped Rydberg ions
- Authors: Filippo Maria Gambetta, Chi Zhang, Markus Hennrich, Igor Lesanovsky,
Weibin Li
- Abstract summary: Conical intersections between electronic potential energy surfaces are paradigmatic for the study of non-adiabatic processes.
We demonstrate that trapped Rydberg ions are a platform to engineer conical intersections.
We study how the presence of a conical intersection affects both the nuclear and electronic dynamics.
- Score: 6.431584269935996
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conical intersections between electronic potential energy surfaces are
paradigmatic for the study of non-adiabatic processes in the excited states of
large molecules. However, since the corresponding dynamics occurs on a
femtosecond timescale, their investigation remains challenging and requires
ultrafast spectroscopy techniques. We demonstrate that trapped Rydberg ions are
a platform to engineer conical intersections and to simulate their ensuing
dynamics on larger length and time scales of the order of nanometers and
microseconds, respectively; all this in a highly controllable system. Here, the
shape of the potential energy surfaces and the position of the conical
intersection can be tuned thanks to the interplay between the high
polarizability and the strong dipolar exchange interactions of Rydberg ions. We
study how the presence of a conical intersection affects both the nuclear and
electronic dynamics demonstrating, in particular, how it results in the
inhibition of the nuclear motion. These effects can be monitored in real-time
via a direct spectroscopic measurement of the electronic populations in a
state-of-the-art experimental setup.
Related papers
- Impact of micromotion on the excitation of Rydberg states of ions in a Paul trap [0.0]
We develop a model describing a single trapped Rydberg ion, which we solve numerically via Floquet theory and analytically using a perturbative approach.
We analyze in which parameter regimes addressable and energetically isolated Rydberg lines persist, which are an important requirement for conducting coherent manipulations.
arXiv Detail & Related papers (2024-10-31T15:42:29Z) - Phonon-assisted coherent transport of excitations in Rydberg-dressed
atom arrays [0.0]
Polarons arise from the self-trapping interaction between electrons and lattice distortions in a solid.
We present a microscopic model that exhibits a diverse range of dynamic behavior, arising from the intricate interplay between excitation-phonon coupling terms.
This work contributes to the understanding of polaron dynamics with their potential applications in coherent quantum transport.
arXiv Detail & Related papers (2023-07-10T10:40:47Z) - Molecular Dynamics in Rydberg Tweezer Arrays: Spin-Phonon Entanglement
and Jahn-Teller Effect [0.0]
Atoms confined in optical tweezer arrays constitute a platform for the implementation of quantum computers and simulators.
We explore electrostatic dipolar interactions that emerge, when two atoms are simultaneously excited to high-lying electronic states, so-called Rydberg states.
This highlights the potential of Rydberg tweezer arrays for the study of molecular phenomena at exaggerated length scales.
arXiv Detail & Related papers (2023-03-15T18:32:42Z) - Direct observation of geometric phase in dynamics around a conical
intersection [0.0]
We experimentally observe geometric-phase interference in the dynamics of a wavepacket travelling around an engineered conical intersection.
We develop a technique to reconstruct the two-dimensional wavepacket densities of a trapped ion.
Experiments agree with the theoretical model, demonstrating the ability of analog quantum simulators to accurately describe nuclear quantum effects.
arXiv Detail & Related papers (2022-11-14T13:00:13Z) - Simulating conical intersections with trapped ions [3.4402595401671814]
A conical intersection can occur when an excited electronic potential energy surface intersects with the ground electronic potential energy surface.
Although conical intersections have been observed experimentally, the geometric phase has not been observed in a molecular system.
We use a trapped atomic ion system to perform a quantum simulation of a conical intersection.
arXiv Detail & Related papers (2022-11-14T13:00:05Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Driving Force and Nonequilibrium Vibronic Dynamics in Charge Separation
of Strongly Bound Electron-Hole Pairs [59.94347858883343]
We study the dynamics of charge separation in one, two and three-dimensional donor-acceptor networks.
This allows us to identify the precise conditions in which underdamped vibrational motion induces efficient long-range charge separation.
arXiv Detail & Related papers (2022-05-11T17:51:21Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Engineering the Radiative Dynamics of Thermalized Excitons with Metal
Interfaces [58.720142291102135]
We analyze the emission properties of excitons in TMDCs near planar metal interfaces.
We find suppression or enhancement of emission relative to the point dipole case by several orders of magnitude.
nanoscale optical cavities are a viable pathway to generating long-lifetime exciton states in TMDCs.
arXiv Detail & Related papers (2021-10-11T19:40:24Z) - Qubit-photon bound states in topological waveguides with long-range
hoppings [62.997667081978825]
Quantum emitters interacting with photonic band-gap materials lead to the appearance of qubit-photon bound states.
We study the features of the qubit-photon bound states when the emitters couple to the bulk modes in the different phases.
We consider the coupling of emitters to the edge modes appearing in the different topological phases.
arXiv Detail & Related papers (2021-05-26T10:57:21Z) - Optically pumped spin polarization as a probe of many-body
thermalization [50.591267188664666]
We study the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers.
We find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength.
Our results open intriguing opportunities to study the onset of thermalization in a system by controlling the internal interactions within the bath.
arXiv Detail & Related papers (2020-05-01T23:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.