Simulating conical intersections with trapped ions
- URL: http://arxiv.org/abs/2211.07319v1
- Date: Mon, 14 Nov 2022 13:00:05 GMT
- Title: Simulating conical intersections with trapped ions
- Authors: Jacob Whitlow, Zhubing Jia, Ye Wang, Chao Fang, Jungsang Kim and
Kenneth R. Brown
- Abstract summary: A conical intersection can occur when an excited electronic potential energy surface intersects with the ground electronic potential energy surface.
Although conical intersections have been observed experimentally, the geometric phase has not been observed in a molecular system.
We use a trapped atomic ion system to perform a quantum simulation of a conical intersection.
- Score: 3.4402595401671814
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conical intersections are common in molecular physics and photochemistry, and
are often invoked to explain observed reaction products. A conical intersection
can occur when an excited electronic potential energy surface intersects with
the ground electronic potential energy surface in the coordinate space of the
nuclear positions. Theory predicts that the conical intersection will result in
a geometric phase for a wavepacket on the ground potential energy surface.
Although conical intersections have been observed experimentally, the geometric
phase has not been observed in a molecular system. Here we use a trapped atomic
ion system to perform a quantum simulation of a conical intersection. The
internal state of a trapped atomic ion serves as the electronic state and the
motion of the atomic nuclei are encoded into the normal modes of motion of the
ions. The simulated electronic potential is constructed by applying
state-dependent forces to the ion with a near-resonant laser. We experimentally
observe the geometric phase on the ground-state surface using adiabatic state
preparation followed by motional state measurement. Our experiment shows the
advantage of combining spin and motion degrees of freedom in a quantum
simulator.
Related papers
- Trapped ion-mediated interactions between two distant trapped atoms [0.0]
We show that when two largely separated atoms interact with a trapped ion via Rydberg excitation of the atoms, the ion-mediated interaction exceeds the direct atom-atom interaction by several orders of magnitude.
Since the motion of the atoms is much slower than the motion of the ion, we resort to Born-Oppenheimer approximation to calculate the ion-mediated adiabatic potential.
arXiv Detail & Related papers (2023-10-08T10:06:20Z) - Coulomb interaction-driven entanglement of electrons on helium [0.0]
We theoretically investigate the generation of emphmotional entanglement between two electrons via their unscreened Coulomb interaction.
We compute the motional energy spectra of the electrons, as well as their entanglement, by diagonalizing the model Hamiltonian with respect to a single-particle Hartree product basis.
In particular, the theoretical tools developed here can be used for fine tuning and optimization of control parameters in future experiments with electrons trapped above the surface of superfluid helium or solid neon.
arXiv Detail & Related papers (2023-10-07T21:40:20Z) - Direct observation of geometric phase in dynamics around a conical
intersection [0.0]
We experimentally observe geometric-phase interference in the dynamics of a wavepacket travelling around an engineered conical intersection.
We develop a technique to reconstruct the two-dimensional wavepacket densities of a trapped ion.
Experiments agree with the theoretical model, demonstrating the ability of analog quantum simulators to accurately describe nuclear quantum effects.
arXiv Detail & Related papers (2022-11-14T13:00:13Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Self-oscillating pump in a topological dissipative atom-cavity system [55.41644538483948]
We report on an emergent mechanism for pumping in a quantum gas coupled to an optical resonator.
Due to dissipation, the cavity field evolves between its two quadratures, each corresponding to a different centrosymmetric crystal configuration.
This self-oscillation results in a time-periodic potential analogous to that describing the transport of electrons in topological tight-binding models.
arXiv Detail & Related papers (2021-12-21T19:57:30Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Partitioning dysprosium's electronic spin to reveal entanglement in
non-classical states [55.41644538483948]
We report on an experimental study of entanglement in dysprosium's electronic spin.
Our findings open up the possibility to engineer novel types of entangled atomic ensembles.
arXiv Detail & Related papers (2021-04-29T15:02:22Z) - Exploring the many-body dynamics near a conical intersection with
trapped Rydberg ions [6.431584269935996]
Conical intersections between electronic potential energy surfaces are paradigmatic for the study of non-adiabatic processes.
We demonstrate that trapped Rydberg ions are a platform to engineer conical intersections.
We study how the presence of a conical intersection affects both the nuclear and electronic dynamics.
arXiv Detail & Related papers (2020-12-03T11:08:59Z) - Motional Quantum States of Surface Electrons on Liquid Helium in a
Tilted Magnetic Field [0.0]
electrons on helium realize a atomic system where interaction between components can be engineered and controlled by simple means and with high accuracy.
Our work introduces a pure condensed-matter system of electrons on helium into the context of atomic, molecular and optical physics.
arXiv Detail & Related papers (2020-11-10T08:25:17Z) - Collective spontaneous emission of two entangled atoms near an
oscillating mirror [50.591267188664666]
We consider the cooperative spontaneous emission of a system of two identical atoms, interacting with the electromagnetic field in the vacuum state.
Using time-dependent theory, we investigate the spectrum of the radiation emitted by the two-atom system.
We show that it is modulated in time, and that the presence of the oscillating mirror can enhance or inhibit the decay rate.
arXiv Detail & Related papers (2020-10-07T06:48:20Z) - Quantum decoherence by Coulomb interaction [58.720142291102135]
We present an experimental study of the Coulomb-induced decoherence of free electrons in a superposition state in a biprism electron interferometer close to a semiconducting and metallic surface.
The results will enable the determination and minimization of specific decoherence channels in the design of novel quantum instruments.
arXiv Detail & Related papers (2020-01-17T04:11:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.