Analog quantum simulation of chemical dynamics
- URL: http://arxiv.org/abs/2012.01852v2
- Date: Tue, 15 Jun 2021 00:15:57 GMT
- Title: Analog quantum simulation of chemical dynamics
- Authors: Ryan J. MacDonell, Claire E. Dickerson, Clare J.T. Birch, Alok Kumar,
Claire L. Edmunds, Michael J. Biercuk, Cornelius Hempel, Ivan Kassal
- Abstract summary: We show that analog quantum simulators can efficiently simulate molecular dynamics using bosonic modes to represent vibrations.
Our approach can be implemented in any device with a qudit controllably coupled to bosonic oscillators.
We expect our method will enable classically intractable chemical dynamics simulations in the near term.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ultrafast chemical reactions are difficult to simulate because they involve
entangled, many-body wavefunctions whose computational complexity grows rapidly
with molecular size. In photochemistry, the breakdown of the Born-Oppenheimer
approximation further complicates the problem by entangling nuclear and
electronic degrees of freedom. Here, we show that analog quantum simulators can
efficiently simulate molecular dynamics using commonly available bosonic modes
to represent molecular vibrations. Our approach can be implemented in any
device with a qudit controllably coupled to bosonic oscillators and with
quantum hardware resources that scale linearly with molecular size, and offers
significant resource savings compared to digital quantum simulation algorithms.
Advantages of our approach include a time resolution orders of magnitude better
than ultrafast spectroscopy, the ability to simulate large molecules with
limited hardware using a Suzuki-Trotter expansion, and the ability to implement
realistic system-bath interactions with only one additional interaction per
mode. Our approach can be implemented with current technology; e.g., the
conical intersection in pyrazine can be simulated using a single trapped ion.
Therefore, we expect our method will enable classically intractable chemical
dynamics simulations in the near term.
Related papers
- Simulating open-system molecular dynamics on analog quantum computers [0.0]
We show that analog quantum simulators can simulate open molecular systems.
In particular, we show that trapped-ion simulators using a mixed qudit-boson (MQB) encoding could simulate molecules in a wide range of condensed phases.
arXiv Detail & Related papers (2024-07-25T07:15:33Z) - Laser-painted cavity-mediated interactions in a quantum gas [0.0]
Experimental platforms based on ultracold atomic gases have significantly advanced the quantum simulation of complex systems.
Here we propose an experimental scheme employing laser-painted cavity-mediated interactions.
Our approach combines the versatility of cavity quantum electrodynamics with the precision of laser manipulation.
arXiv Detail & Related papers (2024-05-13T06:13:16Z) - Seeking a quantum advantage with trapped-ion quantum simulations of condensed-phase chemical dynamics [3.2692763046599502]
Trapped-ion quantum systems may serve as a platform for the analog-quantum simulation of chemical dynamics.
To identify a 'quantum advantage' for these simulations, performance analysis of both analog-quantum simulation on noisy hardware and classical-digital algorithms is needed.
arXiv Detail & Related papers (2023-05-04T21:16:35Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Predicting molecular vibronic spectra using time-domain analog quantum
simulation [0.0]
We introduce a method for scalable analog quantum simulation of molecular spectroscopy.
Our approach can treat more complicated molecular models than previous ones, requires fewer approximations, and can be extended to open quantum systems.
We experimentally demonstrate our algorithm on a trapped-ion device, exploiting both intrinsic electronic and motional degrees of freedom.
arXiv Detail & Related papers (2022-09-14T11:32:55Z) - Coarse grained intermolecular interactions on quantum processors [0.0]
We develop a coarse-grained representation of the electronic response that is ideally suited for determining the ground state of weakly interacting molecules.
We demonstrate our method on IBM superconducting quantum processors.
We conclude that current-generation quantum hardware is capable of probing energies in this weakly bound but nevertheless chemically ubiquitous and biologically important regime.
arXiv Detail & Related papers (2021-10-03T09:56:47Z) - Hybridized Methods for Quantum Simulation in the Interaction Picture [69.02115180674885]
We provide a framework that allows different simulation methods to be hybridized and thereby improve performance for interaction picture simulations.
Physical applications of these hybridized methods yield a gate complexity scaling as $log2 Lambda$ in the electric cutoff.
For the general problem of Hamiltonian simulation subject to dynamical constraints, these methods yield a query complexity independent of the penalty parameter $lambda$ used to impose an energy cost.
arXiv Detail & Related papers (2021-09-07T20:01:22Z) - Molecular spin qudits for quantum simulation of light-matter
interactions [62.223544431366896]
We show that molecular spin qudits provide an ideal platform to simulate the quantum dynamics of photon fields strongly interacting with matter.
The basic unit of the proposed molecular quantum simulator can be realized by a simple dimer of a spin 1/2 and a spin $S$ transition metal ion, solely controlled by microwave pulses.
arXiv Detail & Related papers (2021-03-17T15:03:12Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.