Seeking a quantum advantage with trapped-ion quantum simulations of condensed-phase chemical dynamics
- URL: http://arxiv.org/abs/2305.03156v4
- Date: Fri, 19 Apr 2024 21:46:17 GMT
- Title: Seeking a quantum advantage with trapped-ion quantum simulations of condensed-phase chemical dynamics
- Authors: Mingyu Kang, Hanggai Nuomin, Sutirtha N. Chowdhury, Jonathon L. Yuly, Ke Sun, Jacob Whitlow, Jesús Valdiviezo, Zhendian Zhang, Peng Zhang, David N. Beratan, Kenneth R. Brown,
- Abstract summary: Trapped-ion quantum systems may serve as a platform for the analog-quantum simulation of chemical dynamics.
To identify a 'quantum advantage' for these simulations, performance analysis of both analog-quantum simulation on noisy hardware and classical-digital algorithms is needed.
- Score: 3.2692763046599502
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulating the quantum dynamics of molecules in the condensed phase represents a longstanding challenge in chemistry. Trapped-ion quantum systems may serve as a platform for the analog-quantum simulation of chemical dynamics that is beyond the reach of current classical-digital simulation. To identify a 'quantum advantage' for these simulations, performance analysis of both analog-quantum simulation on noisy hardware and classical-digital algorithms is needed. In this Review, we make a comparison between a noisy analog trapped-ion simulator and a few choice classical-digital methods on simulating the dynamics of a model molecular Hamiltonian with linear vibronic coupling. We describe several simple Hamiltonians that are commonly used to model molecular systems, which can be simulated with existing or emerging trapped-ion hardware. These Hamiltonians may serve as stepping stones toward the use of trapped-ion simulators for systems beyond the reach of classical-digital methods. Finally, we identify dynamical regimes where classical-digital simulations seem to have the weakest performance compared to analog-quantum simulations. These regimes may provide the lowest hanging fruit to exploit potential quantum advantages.
Related papers
- Experimental Quantum Simulation of Chemical Dynamics [0.0]
Existing digital quantum algorithms for chemical simulation require many logical qubits and gates.
Here, we use an analog approach to carry out the first quantum simulations of chemical reactions.
arXiv Detail & Related papers (2024-09-06T06:28:05Z) - Simulating open quantum systems with giant atoms [0.0]
We introduce a simulator for open quantum many-body systems based on giant atoms, i.e., atoms (possibly artificial)
We first show that a simulator consisting of two giant atoms can simulate the dynamics of two coupled qubits.
We demonstrate and analyze the robustness of these simulation results against noise affecting the giant atoms.
arXiv Detail & Related papers (2024-06-19T16:31:42Z) - Improved precision scaling for simulating coupled quantum-classical
dynamics [0.17126708168238122]
We present a super-polynomial improvement in the precision scaling of quantum simulations for coupled classical-quantum systems.
By employing a framework based on the Koopman-von Neumann formalism, we express the Liouville equation of motion as unitary dynamics.
We demonstrate that these simulations can be performed in both microcanonical and canonical ensembles.
arXiv Detail & Related papers (2023-07-24T18:00:03Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Toward simulating quantum field theories with controlled phonon-ion
dynamics: A hybrid analog-digital approach [0.0]
We propose hybrid analog-digital quantum simulations of selected quantum field theories.
On one hand, the semi-digital nature of this proposal offers more flexibility in engineering generic model interactions.
On the other hand, encoding the bosonic fields onto the phonon degrees of freedom of the trapped-ion system allows a more efficient usage of simulator resources.
arXiv Detail & Related papers (2021-04-19T14:35:24Z) - Molecular spin qudits for quantum simulation of light-matter
interactions [62.223544431366896]
We show that molecular spin qudits provide an ideal platform to simulate the quantum dynamics of photon fields strongly interacting with matter.
The basic unit of the proposed molecular quantum simulator can be realized by a simple dimer of a spin 1/2 and a spin $S$ transition metal ion, solely controlled by microwave pulses.
arXiv Detail & Related papers (2021-03-17T15:03:12Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Analog quantum simulation of chemical dynamics [0.0]
We show that analog quantum simulators can efficiently simulate molecular dynamics using bosonic modes to represent vibrations.
Our approach can be implemented in any device with a qudit controllably coupled to bosonic oscillators.
We expect our method will enable classically intractable chemical dynamics simulations in the near term.
arXiv Detail & Related papers (2020-12-03T11:52:38Z) - Engineering analog quantum chemistry Hamiltonians using cold atoms in
optical lattices [69.50862982117127]
We benchmark the working conditions of the numerically analog simulator and find less demanding experimental setups.
We also provide a deeper understanding of the errors of the simulation appearing due to discretization and finite size effects.
arXiv Detail & Related papers (2020-11-28T11:23:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.