Learned Initializations for Optimizing Coordinate-Based Neural
Representations
- URL: http://arxiv.org/abs/2012.02189v2
- Date: Tue, 23 Mar 2021 17:11:16 GMT
- Title: Learned Initializations for Optimizing Coordinate-Based Neural
Representations
- Authors: Matthew Tancik, Ben Mildenhall, Terrance Wang, Divi Schmidt, Pratul P.
Srinivasan, Jonathan T. Barron, Ren Ng
- Abstract summary: Coordinate-based neural representations have shown significant promise as an alternative to discrete, array-based representations.
We propose applying standard meta-learning algorithms to learn the initial weight parameters for these fully-connected networks.
We explore these benefits across a variety of tasks, including representing 2D images, reconstructing CT scans, and recovering 3D shapes and scenes from 2D image observations.
- Score: 47.408295381897815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Coordinate-based neural representations have shown significant promise as an
alternative to discrete, array-based representations for complex low
dimensional signals. However, optimizing a coordinate-based network from
randomly initialized weights for each new signal is inefficient. We propose
applying standard meta-learning algorithms to learn the initial weight
parameters for these fully-connected networks based on the underlying class of
signals being represented (e.g., images of faces or 3D models of chairs).
Despite requiring only a minor change in implementation, using these learned
initial weights enables faster convergence during optimization and can serve as
a strong prior over the signal class being modeled, resulting in better
generalization when only partial observations of a given signal are available.
We explore these benefits across a variety of tasks, including representing 2D
images, reconstructing CT scans, and recovering 3D shapes and scenes from 2D
image observations.
Related papers
- Coordinates Are NOT Lonely -- Codebook Prior Helps Implicit Neural 3D
Representations [29.756718435405983]
Implicit neural 3D representation has achieved impressive results in surface or scene reconstruction and novel view synthesis.
Existing approaches, such as Neural Radiance Field (NeRF) and its variants, usually require dense input views.
We introduce a novel coordinate-based model, CoCo-INR, for implicit neural 3D representation.
arXiv Detail & Related papers (2022-10-20T11:13:50Z) - Multi-initialization Optimization Network for Accurate 3D Human Pose and
Shape Estimation [75.44912541912252]
We propose a three-stage framework named Multi-Initialization Optimization Network (MION)
In the first stage, we strategically select different coarse 3D reconstruction candidates which are compatible with the 2D keypoints of input sample.
In the second stage, we design a mesh refinement transformer (MRT) to respectively refine each coarse reconstruction result via a self-attention mechanism.
Finally, a Consistency Estimation Network (CEN) is proposed to find the best result from mutiple candidates by evaluating if the visual evidence in RGB image matches a given 3D reconstruction.
arXiv Detail & Related papers (2021-12-24T02:43:58Z) - Meta-Learning Sparse Implicit Neural Representations [69.15490627853629]
Implicit neural representations are a promising new avenue of representing general signals.
Current approach is difficult to scale for a large number of signals or a data set.
We show that meta-learned sparse neural representations achieve a much smaller loss than dense meta-learned models.
arXiv Detail & Related papers (2021-10-27T18:02:53Z) - H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction [27.66008315400462]
Recent learning approaches that implicitly represent surface geometry have shown impressive results in the problem of multi-view 3D reconstruction.
We tackle these limitations for the specific problem of few-shot full 3D head reconstruction.
We learn a shape model of 3D heads from thousands of incomplete raw scans using implicit representations.
arXiv Detail & Related papers (2021-07-26T23:04:18Z) - ACORN: Adaptive Coordinate Networks for Neural Scene Representation [40.04760307540698]
Current neural representations fail to accurately represent images at resolutions greater than a megapixel or 3D scenes with more than a few hundred thousand polygons.
We introduce a new hybrid implicit-explicit network architecture and training strategy that adaptively allocates resources during training and inference.
We demonstrate the first experiments that fit gigapixel images to nearly 40 dB peak signal-to-noise ratio.
arXiv Detail & Related papers (2021-05-06T16:21:38Z) - Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D
Shapes [77.6741486264257]
We introduce an efficient neural representation that, for the first time, enables real-time rendering of high-fidelity neural SDFs.
We show that our representation is 2-3 orders of magnitude more efficient in terms of rendering speed compared to previous works.
arXiv Detail & Related papers (2021-01-26T18:50:22Z) - Human Body Model Fitting by Learned Gradient Descent [48.79414884222403]
We propose a novel algorithm for the fitting of 3D human shape to images.
We show that this algorithm is fast (avg. 120ms convergence), robust to dataset, and achieves state-of-the-art results on public evaluation datasets.
arXiv Detail & Related papers (2020-08-19T14:26:47Z) - MetaSDF: Meta-learning Signed Distance Functions [85.81290552559817]
Generalizing across shapes with neural implicit representations amounts to learning priors over the respective function space.
We formalize learning of a shape space as a meta-learning problem and leverage gradient-based meta-learning algorithms to solve this task.
arXiv Detail & Related papers (2020-06-17T05:14:53Z) - Learning Local Neighboring Structure for Robust 3D Shape Representation [143.15904669246697]
Representation learning for 3D meshes is important in many computer vision and graphics applications.
We propose a local structure-aware anisotropic convolutional operation (LSA-Conv)
Our model produces significant improvement in 3D shape reconstruction compared to state-of-the-art methods.
arXiv Detail & Related papers (2020-04-21T13:40:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.