Coordinates Are NOT Lonely -- Codebook Prior Helps Implicit Neural 3D
Representations
- URL: http://arxiv.org/abs/2210.11170v2
- Date: Fri, 21 Oct 2022 04:51:01 GMT
- Title: Coordinates Are NOT Lonely -- Codebook Prior Helps Implicit Neural 3D
Representations
- Authors: Fukun Yin, Wen Liu, Zilong Huang, Pei Cheng, Tao Chen, Gang YU
- Abstract summary: Implicit neural 3D representation has achieved impressive results in surface or scene reconstruction and novel view synthesis.
Existing approaches, such as Neural Radiance Field (NeRF) and its variants, usually require dense input views.
We introduce a novel coordinate-based model, CoCo-INR, for implicit neural 3D representation.
- Score: 29.756718435405983
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Implicit neural 3D representation has achieved impressive results in surface
or scene reconstruction and novel view synthesis, which typically uses the
coordinate-based multi-layer perceptrons (MLPs) to learn a continuous scene
representation. However, existing approaches, such as Neural Radiance Field
(NeRF) and its variants, usually require dense input views (i.e. 50-150) to
obtain decent results. To relive the over-dependence on massive calibrated
images and enrich the coordinate-based feature representation, we explore
injecting the prior information into the coordinate-based network and introduce
a novel coordinate-based model, CoCo-INR, for implicit neural 3D
representation. The cores of our method are two attention modules: codebook
attention and coordinate attention. The former extracts the useful prototypes
containing rich geometry and appearance information from the prior codebook,
and the latter propagates such prior information into each coordinate and
enriches its feature representation for a scene or object surface. With the
help of the prior information, our method can render 3D views with more
photo-realistic appearance and geometries than the current methods using fewer
calibrated images available. Experiments on various scene reconstruction
datasets, including DTU and BlendedMVS, and the full 3D head reconstruction
dataset, H3DS, demonstrate the robustness under fewer input views and fine
detail-preserving capability of our proposed method.
Related papers
- N-BVH: Neural ray queries with bounding volume hierarchies [51.430495562430565]
In 3D computer graphics, the bulk of a scene's memory usage is due to polygons and textures.
We devise N-BVH, a neural compression architecture designed to answer arbitrary ray queries in 3D.
Our method provides faithful approximations of visibility, depth, and appearance attributes.
arXiv Detail & Related papers (2024-05-25T13:54:34Z) - DNS SLAM: Dense Neural Semantic-Informed SLAM [92.39687553022605]
DNS SLAM is a novel neural RGB-D semantic SLAM approach featuring a hybrid representation.
Our method integrates multi-view geometry constraints with image-based feature extraction to improve appearance details.
Our experimental results achieve state-of-the-art performance on both synthetic data and real-world data tracking.
arXiv Detail & Related papers (2023-11-30T21:34:44Z) - Learning Personalized High Quality Volumetric Head Avatars from
Monocular RGB Videos [47.94545609011594]
We propose a method to learn a high-quality implicit 3D head avatar from a monocular RGB video captured in the wild.
Our hybrid pipeline combines the geometry prior and dynamic tracking of a 3DMM with a neural radiance field to achieve fine-grained control and photorealism.
arXiv Detail & Related papers (2023-04-04T01:10:04Z) - Neural Capture of Animatable 3D Human from Monocular Video [38.974181971541846]
We present a novel paradigm of building an animatable 3D human representation from a monocular video input, such that it can be rendered in any unseen poses and views.
Our method is based on a dynamic Neural Radiance Field (NeRF) rigged by a mesh-based parametric 3D human model serving as a geometry proxy.
arXiv Detail & Related papers (2022-08-18T09:20:48Z) - Neural Groundplans: Persistent Neural Scene Representations from a
Single Image [90.04272671464238]
We present a method to map 2D image observations of a scene to a persistent 3D scene representation.
We propose conditional neural groundplans as persistent and memory-efficient scene representations.
arXiv Detail & Related papers (2022-07-22T17:41:24Z) - Vision Transformer for NeRF-Based View Synthesis from a Single Input
Image [49.956005709863355]
We propose to leverage both the global and local features to form an expressive 3D representation.
To synthesize a novel view, we train a multilayer perceptron (MLP) network conditioned on the learned 3D representation to perform volume rendering.
Our method can render novel views from only a single input image and generalize across multiple object categories using a single model.
arXiv Detail & Related papers (2022-07-12T17:52:04Z) - H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction [27.66008315400462]
Recent learning approaches that implicitly represent surface geometry have shown impressive results in the problem of multi-view 3D reconstruction.
We tackle these limitations for the specific problem of few-shot full 3D head reconstruction.
We learn a shape model of 3D heads from thousands of incomplete raw scans using implicit representations.
arXiv Detail & Related papers (2021-07-26T23:04:18Z) - Light Field Networks: Neural Scene Representations with
Single-Evaluation Rendering [60.02806355570514]
Inferring representations of 3D scenes from 2D observations is a fundamental problem of computer graphics, computer vision, and artificial intelligence.
We propose a novel neural scene representation, Light Field Networks or LFNs, which represent both geometry and appearance of the underlying 3D scene in a 360-degree, four-dimensional light field.
Rendering a ray from an LFN requires only a *single* network evaluation, as opposed to hundreds of evaluations per ray for ray-marching or based on volumetrics.
arXiv Detail & Related papers (2021-06-04T17:54:49Z) - Hybrid Approach for 3D Head Reconstruction: Using Neural Networks and
Visual Geometry [3.970492757288025]
We present a novel method for reconstructing 3D heads from a single or multiple image(s) using a hybrid approach based on deep learning and geometric techniques.
We propose an encoder-decoder network based on the U-net architecture and trained on synthetic data only.
arXiv Detail & Related papers (2021-04-28T11:31:35Z) - Weakly Supervised Learning of Multi-Object 3D Scene Decompositions Using
Deep Shape Priors [69.02332607843569]
PriSMONet is a novel approach for learning Multi-Object 3D scene decomposition and representations from single images.
A recurrent encoder regresses a latent representation of 3D shape, pose and texture of each object from an input RGB image.
We evaluate the accuracy of our model in inferring 3D scene layout, demonstrate its generative capabilities, assess its generalization to real images, and point out benefits of the learned representation.
arXiv Detail & Related papers (2020-10-08T14:49:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.