COVID-CLNet: COVID-19 Detection with Compressive Deep Learning
Approaches
- URL: http://arxiv.org/abs/2012.02234v1
- Date: Thu, 3 Dec 2020 19:56:48 GMT
- Title: COVID-CLNet: COVID-19 Detection with Compressive Deep Learning
Approaches
- Authors: Khalfalla Awedat and Almabrok Essa
- Abstract summary: We propose a computer-aided detection (CADe) system that uses the computed tomography (CT) scan images.
This proposed boosted deep learning network (CLNet) is based on the implementation of Deep Learning (DL) networks.
Experiments performed on different compressed methods show promising results for COVID-19 detection.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One of the most serious global health threat is COVID-19 pandemic. The
emphasis on improving diagnosis and increasing the diagnostic capability helps
stopping its spread significantly. Therefore, to assist the radiologist or
other medical professional to detect and identify the COVID-19 cases in the
shortest possible time, we propose a computer-aided detection (CADe) system
that uses the computed tomography (CT) scan images. This proposed boosted deep
learning network (CLNet) is based on the implementation of Deep Learning (DL)
networks as a complementary to the Compressive Learning (CL). We utilize our
inception feature extraction technique in the measurement domain using CL to
represent the data features into a new space with less dimensionality before
accessing the Convolutional Neural Network. All original features have been
contributed equally in the new space using a sensing matrix. Experiments
performed on different compressed methods show promising results for COVID-19
detection. In addition, our novel weighted method based on different sensing
matrices that used to capture boosted features demonstrates an improvement in
the performance of the proposed method.
Related papers
- Enhancing Angular Resolution via Directionality Encoding and Geometric Constraints in Brain Diffusion Tensor Imaging [70.66500060987312]
Diffusion-weighted imaging (DWI) is a type of Magnetic Resonance Imaging (MRI) technique sensitised to the diffusivity of water molecules.
This work proposes DirGeo-DTI, a deep learning-based method to estimate reliable DTI metrics even from a set of DWIs acquired with the minimum theoretical number (6) of gradient directions.
arXiv Detail & Related papers (2024-09-11T11:12:26Z) - Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1 [51.404644401997736]
We propose a complete framework to remove speckle in polarimetric SAR images using a convolutional neural network.
Experiments show that the proposed approach offers exceptional results in both speckle reduction and resolution preservation.
arXiv Detail & Related papers (2024-08-28T10:07:17Z) - Dissecting Self-Supervised Learning Methods for Surgical Computer Vision [51.370873913181605]
Self-Supervised Learning (SSL) methods have begun to gain traction in the general computer vision community.
The effectiveness of SSL methods in more complex and impactful domains, such as medicine and surgery, remains limited and unexplored.
We present an extensive analysis of the performance of these methods on the Cholec80 dataset for two fundamental and popular tasks in surgical context understanding, phase recognition and tool presence detection.
arXiv Detail & Related papers (2022-07-01T14:17:11Z) - COVID-Net US-X: Enhanced Deep Neural Network for Detection of COVID-19
Patient Cases from Convex Ultrasound Imaging Through Extended Linear-Convex
Ultrasound Augmentation Learning [75.74756992992147]
The global population continues to face significant negative impact by the on-going COVID-19 pandemic.
There has been an increasing usage of point-of-care ultrasound (POCUS) imaging as a low-cost effective imaging modality of choice.
A major challenge to building deep neural networks for COVID-19 screening using POCUS is the types of probes used.
arXiv Detail & Related papers (2022-04-29T02:13:39Z) - Explainable-by-design Semi-Supervised Representation Learning for
COVID-19 Diagnosis from CT Imaging [23.918269366873567]
We present an explainable Deep Learning approach based on a semi-supervised classification pipeline that employs variational autoencoders to extract efficient feature embedding.
With the explainable classification results, the proposed diagnosis system is very effective for COVID-19 classification.
arXiv Detail & Related papers (2020-11-23T20:51:22Z) - Triage of Potential COVID-19 Patients from Chest X-ray Images using
Hierarchical Convolutional Networks [5.7179132552879395]
The current COVID-19 pandemic has motivated the researchers to use artificial intelligence techniques for a potential alternative to reverse transcription-polymerase chain reaction (RT-PCR)
The chest X-ray (CXR) is one of the alternatives to achieve fast diagnosis but the unavailability of large-scale annotated data makes the clinical implementation of machine learning-based COVID detection difficult.
In this paper, we propose the use of hierarchical convolutional network (HCN) architecture to naturally augment the data along with diversified features.
arXiv Detail & Related papers (2020-11-01T20:01:22Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z) - An Attention Mechanism with Multiple Knowledge Sources for COVID-19
Detection from CT Images [1.6882040908691862]
We propose a novel strategy to improve the performance of several baselines by leveraging useful information sources relevant to doctors' judgments.
Infected regions and heat maps extracted from learned networks are integrated with the global image via an attention mechanism during the learning process.
This procedure not only makes our system more robust to noise but also guides the network focusing on local lesion areas.
arXiv Detail & Related papers (2020-09-23T09:05:24Z) - Contrastive Cross-site Learning with Redesigned Net for COVID-19 CT
Classification [20.66003113364796]
The pandemic of coronavirus disease 2019 (COVID-19) has lead to a global public health crisis spreading hundreds of countries.
To assist the clinical diagnosis and reduce the tedious workload of image interpretation, developing automated tools for COVID-19 identification with CT image is highly desired.
This paper proposes a novel joint learning framework to perform accurate COVID-19 identification by effectively learning with heterogeneous datasets.
arXiv Detail & Related papers (2020-09-15T11:09:04Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - A Deep Convolutional Neural Network for COVID-19 Detection Using Chest
X-Rays [2.2843885788439797]
We present image classifiers based on Dense Convolutional Networks and transfer learning to classify chest X-ray images according to three labels: COVID-19, pneumonia and normal.
We were able to reach test accuracy of 100% on our test dataset.
arXiv Detail & Related papers (2020-04-30T13:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.